Тема 1: физические основы радиационной гигиены 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Тема 1: физические основы радиационной гигиены



ВИДЫ ИОНИЗИРУЮЩИХ ИЗЛУЧЕНИЙ

1. Корпускулярные

2. Электромагнитные (фотонные).

Корпускулярное излучение - ионизирующее излучение, состоящее из частиц:

· заряженных (альфа-, бета-частиц, протонов и т.д.)

· незаряженных (нейтроны)

Электромагнитное (фотонное) - включает гамма- и рентгеновское излучение.

Любое ионизирующее излучение характеризуется энергией E, измеряемой в электронвольтах (эВ). Электронвольт - энергия, которую приобретает электрон при ускорении в электрическом поле с разностью потенциалов в 1 вольт. Для характеристики ионизирующих излучений используются производные величины - килоэлектронвольт (КэВ, 1 КэВ = 103эВ), мегаэлектронвольт (1 МэВ = 106эВ).

Альфа-излучение представляет собой поток альфа-частиц (ядер атомов гелия), состоящих из 2-х протонов и 2-х нейтронов и имеющих атомную массу 4 и заряд +2. Основной источник гамма-излучения - радиоактивный альфа-распад. Известно более 200 альфа-излучателей, большинство из них - естественные радионуклиды семейства урана, радия и тория.

Диапазон энергий для альфа-частиц составляет от 4 до 9 МэВ, альфа-излучение, как правило, сопровождается излучением гамма-квантов с энергией от 0,036 до 2,76 МэВ.

При взаимодействии альфа-частиц с веществом их энергия расходуется на возбуждение и ионизацию атомов среды. Альфа-излучение характеризуется высокой линейной плотностью ионизации (ЛПИ) и линейной передачей энергии (ЛПЭ). ЛПИ - это число пар ионов, образующихся на единице длины пробега частиц (пар ионов/мкм). ЛПЭ - количество энергии, переданной веществу заряженной частицей на единице длины ее пробега (КэВ/мкм). Ионизирующее излучение, у которого ЛПЭ менее 10 КэВ/мкм, относится к редкоионизирующим, а более 10 КэВ/мкм – к плотноионизирующим излучениям. В среднем ЛПЭ для альфа-частиц в биологических тканях составляет 100 КэВ/мкм, что значительно выше, чем для других заряженных частиц. Поэтому альфа-излучение относится к плотноионизирующим и альфа-частица имеет незначительную проникающую способность: в воздухе - до 3 см, в мышечной ткани, воде - около 50 мкм, в костной ткани, алюминии - около. 17 мкм. Внешнее облучение альфа-частицами не представляет опасности, поскольку последние не проникают глубже отмирающих слоев кожного эпителия. Очень опасно внутреннее альфа-облучение при инкорпорировании радионуклидов. Защита при работе с альфа-излучателями должна быть направлена на исключение любой потенциальной возможности попадания радиоактивных веществ в организм с вдыхаемым воздухом, пищей и водой.

 

В отличие от альфа-излучающих радионуклидов, бета-излучатели рассеяны по всей таблице Менделеева, начиная от водорода и до трансурановых элементов. Средняя энергия бета-частиц ≤ 3 МэВ. При прохождении бета-частиц через вещество имеют место упругие и неупругие взаимодействия с атомами среды. Упругие взаимодействия заключаются в том, что сумма кинетических энергий взаимодействующих частиц после взаимодействия остается неизменной. При неупругом взаимодействии часть энергии взаимодействующих частиц передается образовавшимся свободным частицам или квантам (неупругое рассеивание, ионизация и возбуждение атомов, возбуждение ядер, тормозное излучение). По радиобиологическим характеристикам бета-излучение относится к редкоионизирующим, удельная плотность ионизации примерно в 1000 раз меньше, чем у альфа-излучения. Несмотря на это, внешнее облучение бета-частицами представляет опасность для человека. Критические органы - кожа и хрусталик глаза. Пробег бета-частиц в воздухе - до 11 м, в мышечной ткани, воде - около 17 мм, в костной ткани, алюминии - 5,5 мм. При взаимодействии бета-излучения с веществом возникает тормозное электромагнитное излучение. Выход его пропорционален атомному номеру и плотности вещества, поэтому для защиты используют вещества с малым атомным номером - алюминий, органическое стекло, воду. При высокой активности бета-источника тормозное излучение может быть настолько интенсивным, что требуется защита и от него, т.е. к легкому материалу защиты от бета-излучения необходимо добавить еще один слой из тяжелых материалов, например, свинца.

 

Рентгеновское и гамма-излучения относятся к электромагнитным. Рентгеновское представляет собой совокупность характеристического и тормозного излучений (характеристическое излучение испускается при изменении энергетического состояния атома, тормозное - при изменении кинетической энергии заряженных частиц). Возникает в защите источников бета-излучения, рентгеновских трубках, ускорителях электронов и т.д.

R-излучение получают в рентгеновской трубке при торможении электронов. Катод с нитью накала испускает электроны, которые ускоряясь в электрическом поле, тормозятся на аноде. При торможении происходит преобразование энергии, причем 98-99% ее переходит в тепловую (нагрев анода), а 1-2% преобразуется в тормозное излучение (в данном случае - рентгеновское). Мощность дозы тормозного R-излучения зависит от:

· силы тока

· материала анода (атомного номера)

· напряжения на трубке

Источниками R-излучения являются все электровакуумные приборы высоких напряжений, телевизионные трубки, мониторы, усилительные лампы, приборы СВЧ-диапазона, электронно-лучевые установки для резки и сварки металлов в вакууме (неиспользуемое R-излучение), а также ускорительные устройства, работающие на тормозный пучок, микротроны, линейные ускорители и, конечно, рентгеновские трубки (используемое R-излучение).

Гамма-излучение испускается при ядерных превращениях:

· радиоактивном распаде (бета- и альфа-распады);

· аннигиляции электронов и позитронов;

· делении ядер - при этом осколки находятся в возбужденном состоянии, следствием чего является испускание гамма-квантов;

· взаимодействии нейтронов с веществом.

Принципы взаимодействия рентгеновского и гамма-излучений с веществом идентичны. Эти излучения называют косвенноионизирующими, т.к. процесс ионизации опосредован через ряд первичных эффектов, основными из которых являются:

1. Фотоэффект - вместо фотона после его взаимодействия с веществом излучается электрон (при низкой энергии (1 – 500 КэВ) кванта). Энергия падающего кванта полностью поглощается веществом, в результате появляются свободные электроны, обладающие определенной кинетической энергией, величина которой равна энергии кванта излучения за вычетом работы выхода данного электрона. Свободный электрон, ассоциируясь с нейтральным атомом, порождает отрицательный ион.

 

Рис. 2. Схема фотоэффекта

 

Фотоэффект характерен только для длинноволнового рентгеновского излучения. Его вклад во взаимодействие пропорционален Z ядер атомов (~Z3).

2. С повышением энер­гии излучения вероятность фотоэффекта очень быстро уменьшается, и для излучений с энергией около 1 МэВ, его вкладом во взаимодействие можно пренебречь; главную роль при этом играет другой способ размена энергии — эффект Комптона.

Комптоновский эффект – энергия кванта частично поглощаются веществом, в результате образуется электрон и рассеянное излучение, энергия которого всегда меньше энергии первичного излучения. При этом эффекте происходит рассеяние падающего фотона излучения электроном атома, которому передается лишь часть энергии фотона.

 

Рис. 3. Схема Комптон-эффекта

 

Так как направление движения фотона отличается от первоначального, то говорят о рассеянии фотона на электроне. В дальнейшем фотон может вновь претерпевать Комптон-эффект и т. д.

Поэтому в отличие от фотоэлектронов энергия электронов отдачи, образующихся при эффекте Комптона, изменяется в широких пределах (от нуля до некоторого максимального значения). Средняя их энергия возрастает с увеличением энергии падающего излучения. Доля энергии, поглощенной комптоновскими электронами, в общем количестве поглощенной энергии увеличивается с жесткостью излучения.

3. Наконец, третий вид взаимодействия излучения с веществом - эффект образования заряженных пар - характеризуется возможностью превращения γ -кванта большой энергии (>1,02 Мэв) в пару частиц - электрон и позитрон. Энергия гамма-кванта преобразуется в энергию заряженных частиц - электрона и позитрона (при большой энергии гамма-кванта). Этот процесс вызывается столкновением γ-кванта с какой-либо заряженной частицей, например атомным ядром, в поле которой и образуется электронно-позитронная пара. Относительный вклад этого вида взаимодействия изменяется пропорционально Z3 и поэтому для тяжелых элементов он больше, чем для легких.

Рис. 4. Схема образования электронно-позитронных пар

Следовательно, в зависимости от энергии падающего излучения преобладает тот или иной вид его взаимодействия с веществом. В большинстве случаев при облучении биологических объектов энергия используемого электромагнитного излучения находится в диапазоне 0,2—2 МэВ, поэтому наибольшей вероятностью обладает Комптон-эффект.

По радиобиологической характеристике R и гамма-излучения относятся к редкоионизирующим. Это проникающие излучения, имеют большие значения длины свободного пробега, который зависит от энергии излучения (в воздухе - до несколько км, в теле человека ослабляется в 3-4 раза). Средняя длина их пробега в веществе зависит также от его плотности. Она минимальна в материалах, подобных свинцу, используемых обычно в качестве защитных экранов. Защита от проникающего излучения основана на использовании материалов, содержащих тяжелые элементы - свинец, обедненный уран. Для стационарной защиты применяется монолитный гидратированный бетон, в рентгеновских кабинетах - баритовая штукатурка.

РЕГЛАМЕНТАЦИЯ ОБЛУЧЕНИЯ

 

ОБЩИЕ ПОЛОЖЕНИЯ ОБЕСПЕЧЕНИЯ РАДИАЦИОННОЙ БЕЗОПАСНОСТИ

Радиационная безопасность персонала, населения и окружающей природной среды считается обеспеченной, если соблюдаются основные принципы радиационной безопасности (обоснование, оптимизация, нормирование) и требования радиационной защиты, установленные Федеральным законом «О радиационной безопасности населения», НРБ-99 и действующими санитарными правилами.

НОРМЫ РАДИАЦИОННОЙ БЕЗОПАСНОСТИ (НРБ-99).

Нормы радиационной безопасности НРБ-99 применяются для обеспечения безопасности человека во всех условиях воздействия на него ионизирующего излучения искусственного или природного происхождения.

НРБ-99 распространяются на следующие виды воздействия ионизирующего излучения на человека:

· облучение персонала и населения в условиях нормальной эксплуатации техногенных источников ионизирующего излучения;

· облучение персонала и населения в условиях радиационной аварии;

· облучение работников промышленных предприятий и населения природными источниками ионизирующего излучения;

· медицинское облучение населения.

Требования Норм радиационной безопасности не распространяется на источники ионизирующего излучения, создающие годовую эффективную дозу не более 10 мкЗв и коллективную дозу не более 1 чел-Зв при любых условиях их использования, а также на космическое излучение на поверхности Земли и облучение, создаваемое содержащимся в организме человека калием-40, на которые практически невозможно влиять. Автоматически освобождаются от регламентации генераторы излучений, при условии, что при нормальной эксплуатации мощность эквивалентной дозы в любой точке на расстоянии 0,1м от любой доступной поверхности аппаратуры не превышает 1,0 мкЗв/ч.

· Главной целью радиационной безопасности является охрана здоровья людей от вредного воздействия ионизирующего излучения путем соблюдения основных принципов и норм радиационной безопасности без необоснованных ограничений полезной деятельности при использовании излучения в различных областях хозяйства, науке и медицине.

· Нормы радиационной безопасности НРБ-99 относятся только к проблеме защиты человека.

· Нормы радиационной безопасности НРБ-99 относятся только к ионизирующему излучению.

· для обеспечения радиационной безопасности при нормальной эксплуатации необходимо руководствоваться следующими основными принципами:

n непревышение допустимых пределов индивидуальных доз облучения граждан от всех источников ионизирующего излучения (принцип нормирования);

n запрещение всех видов деятельности по использованию источников ионизирующего излучения, при которых полученная для человека и общества польза не превышает риск возможного вреда, причиненного дополнительным к естественному радиационному фону облучением (принцип обоснования);

n поддержание на возможно низком и достижимом уровне с учетом экономических и социальных факторов индивидуальных доз облучения и числа облучаемых лиц при использовании любого источника ионизирующего излучения (принцип оптимизации).

Принцип обоснования относится к тем видам деятельности, которые сопровождаются или могут сопровождаться облучением людей. К таким видам деятельности относятся атомная энергетика, использование источников ионизирующего излучения для диагностики различных заболеваний и многие другие. Обоснованность таких видов деятельности (превышение пользы над суммарным ущербом от этой деятельности) решается, как правило, на государственном уровне.

Принцип обоснования должен применяться на стадии принятия решения уполномоченными органами при проектировании новых источников излучения и радиационных объектов, выдаче лицензий и утверждении нормативно-технической документации на использование источников излучения, а также при изменении условий их эксплуатации.

В условиях радиационной аварии принцип обоснования относится не к источникам излучения и условиям облучения, а к защитному мероприятию. При этом в качестве величины пользы следует оценивать предотвращенную данным мероприятием дозу. Однако мероприятия, направленные на восстановление контроля над источниками излучения, должны проводиться в обязательном порядке.

Принцип оптимизации предусматривает поддержание на возможно низком и достижимом уровне как индивидуальных (ниже пределов, установленных НРБ-99), так и коллективных доз облучения, с учетом социальных и экономических факторов.

В условиях радиационной аварии, когда вместо пределов доз действуют более высокие уровни вмешательства, принцип оптимизации должен применяться к защитному мероприятию с учетом предотвращаемой дозы облучения и ущерба, связанного с вмешательством.

Принцип нормирования, требующий непревышения установленных Федеральным законом «О радиационной безопасности населения» и НРБ-99 индивидуальных пределов доз и других нормативов радиационной безопасности, должен соблюдаться всеми организациями и лицами, от которых зависит уровень облучения людей.

Наибольшее значение для практики имеют принципы нормирования и оптимизации. Понятие норматива является традиционным для различных областей гигиены, токсикологии и экологии. Обычно норматив рассматривается как граница между «опасным» и «безопасным» уровнем воздействия данного фактора. Такая трактовка норматива является естественной, если предполагается пороговый характер воздействия фактора и норматив установлен несколько ниже порога.

В отличие от этого практически все радиационные нормативы, приведенные в НРБ-99, установлены на уровнях значительно ниже порогов детерминированных эффектов. В этой области доз единственным последствием облучения людей является риск возникновения стохастических эффектов дополнительно к спонтанному уровню. Вероятность последствий облучения пропорциональна значению эффективной дозы у людей. Линейная беспороговая зависимость «доза-эффект» означает, что не существует абсолютно безопасного уровня облучения людей. Последствия облучения отсутствуют только при нулевом значении эффективной дозы, что практически недостижимо. С другой стороны, превышение любого значения в этой области доз не приводит к резкому увеличению последствий облучения.

Краткая формулировка принципа оптимизации это – снижение доз облучения людей до разумно низкого уровня с учетом экономических и социальных факторов.

Для контроля за эффективными и эквивалентными дозами облучения, регламентированными НРБ-99, вводится система дополнительных производных нормативов от пределов доз в виде допустимых уровней. Критериями, по которым контролируется внешнее облучение, являются уровни мощности доз, плотность потока частиц. Критерии внутреннего облучения – предел годового поступления, объемная активность радионуклидов в воздухе, уровень радиоактивного загрязнения и т.д.

Поскольку производные нормативы при техногенном облучении рассчитаны для однофакторного воздействия и каждый из них исчерпывает весь предел дозы, то их использование должно быть основано на условии непревышения единицы суммой отношений всех контролируемых величин к их допустимым значениям.

Ответственность за соблюдение Норм согласно закону РФ о радиационной безопасности населения несут юридические лица, получившие разрешение (лицензию) на использование источников ионизирующего излучения.

Ответственность за соблюдение требований по ограничению облучения населения природными источниками ионизирующего излучения несет администрация территорий и субъектов Российской Федерации.

 

 

Тема 1: ФИЗИЧЕСКИЕ ОСНОВЫ РАДИАЦИОННОЙ ГИГИЕНЫ

Радиоактивность - самопроизвольное превращение ядер атомов, сопровождающееся испусканием ионизирующих излучений.

Различают следующие виды радиоактивных превращений:

1. Альфа-распад. Характерен для естественных радиоактивных элементов с большими порядковыми номерами (стоящих после свинца в ПСЭ Менделеева) и, соответственно, с малыми энергиями связи частиц ядра. Альфа-распад приводит к уменьшению порядкового номера радионуклида на 2 единицы и массового числа на 4. При распаде могут возникать возбужденные ядра, которые, переходя в основное состояние, испускают гамма-кванты.

2. Электронный бета-распад. Характерен как для естественных, так и для искусственных радиоактивных элементов. При этом виде распада ядро испускает электрон, в результате заряд его увеличивается на единицу при неизменном массовом числе. Ядра возникших атомов могут находиться в возбужденном состоянии, переход их в невозбужденное состояние сопровождается испусканием гамма-квантов.

3. Позитронный бета-распад. Наблюдается у некоторых искусственных радиоизотопов. При этом порядковый номер атома уменьшается на единицу, а масса не изменяется.

4. К-захват (захват орбитального электрона ядром) - ядро захватывает электрон с К-оболочки и имеет место такое же превращение ядра, как и при позитронном бета-распаде. Из ядра при К-захвате выбрасывается нейтрино и имеет место характеристическое рентгеновское излучение.

5. Самопроизвольное деление ядер. Наблюдается у радиоактивных элементов с большим атомным номером (уран-235, плутоний) при захвате их ядрами медленных нейтронов. При делении образуется пара осколков с выбросом нейтронов. Осколки, как правило, ядра элементов средних массовых чисел, которые претерпевают несколько последовательных бета-распадов.

Количественной характеристикой радиоактивности является АКТИВНОСТЬ, единицей измерения которой принят беккерель (Бк). Беккерель соответствует активности, равной одному ядерному превращению в секунду. Специальной (внесистемной) единицей является кюри (Ки). 1 Ки соответствует такое количество препарата, в котором за 1 сек происходит 3,7×1010ядерных превращений, т.е. 1 Ки = 3,7×1010Бк. Кюри — очень большая величина. В практической работе используют производные единицы: милликюри (мКи), микро­кюри (мкКи). Таким образом, можно записать:

1 Kи = 3,7×1010 расп./с = 2,22×1012расп./мин:

1 мКи = 10-3Ки = 3,7×107pacп./c = 2,22×109расп./мин:

1 мкКи = 10-6Ки = 3,7×104расп./с = 2,22×106расп./мин:

В качестве единицы активности веществ-гамма-излучателей нередко используют миллиграмм-эквивалент радия (мг/экв), представляющий собой количество препарата, создающего такую же мощность дозы, как и 1 мг радия в тождественных условиях измерения.

Закономерностью радиоактивного распада является то, что в единицу времени распадается определенная, строго постоянная доля атомов каждого радионуклида (независимо от их количества), которая и определяет его период полураспада (Т1/2) - промежуток времени, в течение которого распадается половина всех атомов данного радионуклида.

Период полураспада указывает на степень устойчивости ядра атома. Единицы измерения: с, ч, день и т. д.

Период полураспада и постоянная распада связаны между собой соотношением:

T1/2=0,693/λ,

Отсюда видно, что чем меньше значение постоянной распада, тем больше значение периода полураспада (распад идет медленнее) и, наоборот, чем больше значение постоянной распада, тем меньше значение периода полураспада. Следует отметить, что значения периода полураспада и постоянной распада не зависят от внешних условий и определяются лишь свойствами самого радиоактивного ядра. Естественно, каждый радиоактивный изотоп имеет свое значение периода по­лураспада и постоянной распада. Численные значения этих величин определяются экспериментально.

Т1/2 у различных элементов колеблется в значительных пределах - от долей секунды до нескольких миллионов лет. Например:

3H - 12,46 года 24Na - 15,1 часа 35S - 87 дней 60Со - 5,3 года1 31I - 8,05 дня

14С - 5568 лет 32P - 14,3 дня 45Са - 152 дня 90Sr - 28 лет 238U - 4,5109 лет

Число ядер радиоактивного изотопа уменьшается со временем по экспоненциальному закону. Графически закон радиоактивного распада выражается экспоненциальной кривой (рис.1).

Видно, что с увеличением числа периодов полураспада количество нераспавшихся атомов убывает, приближаясь к нулю. Распад любого радиоактивного элемента подчиняется статистическим закономерностям и носит вероятностный характер.

Рис. 1. Экспоненциальная кривая радиоактивного распада

ВИДЫ ИОНИЗИРУЮЩИХ ИЗЛУЧЕНИЙ

1. Корпускулярные

2. Электромагнитные (фотонные).

Корпускулярное излучение - ионизирующее излучение, состоящее из частиц:

· заряженных (альфа-, бета-частиц, протонов и т.д.)

· незаряженных (нейтроны)

Электромагнитное (фотонное) - включает гамма- и рентгеновское излучение.

Любое ионизирующее излучение характеризуется энергией E, измеряемой в электронвольтах (эВ). Электронвольт - энергия, которую приобретает электрон при ускорении в электрическом поле с разностью потенциалов в 1 вольт. Для характеристики ионизирующих излучений используются производные величины - килоэлектронвольт (КэВ, 1 КэВ = 103эВ), мегаэлектронвольт (1 МэВ = 106эВ).

Альфа-излучение представляет собой поток альфа-частиц (ядер атомов гелия), состоящих из 2-х протонов и 2-х нейтронов и имеющих атомную массу 4 и заряд +2. Основной источник гамма-излучения - радиоактивный альфа-распад. Известно более 200 альфа-излучателей, большинство из них - естественные радионуклиды семейства урана, радия и тория.

Диапазон энергий для альфа-частиц составляет от 4 до 9 МэВ, альфа-излучение, как правило, сопровождается излучением гамма-квантов с энергией от 0,036 до 2,76 МэВ.

При взаимодействии альфа-частиц с веществом их энергия расходуется на возбуждение и ионизацию атомов среды. Альфа-излучение характеризуется высокой линейной плотностью ионизации (ЛПИ) и линейной передачей энергии (ЛПЭ). ЛПИ - это число пар ионов, образующихся на единице длины пробега частиц (пар ионов/мкм). ЛПЭ - количество энергии, переданной веществу заряженной частицей на единице длины ее пробега (КэВ/мкм). Ионизирующее излучение, у которого ЛПЭ менее 10 КэВ/мкм, относится к редкоионизирующим, а более 10 КэВ/мкм – к плотноионизирующим излучениям. В среднем ЛПЭ для альфа-частиц в биологических тканях составляет 100 КэВ/мкм, что значительно выше, чем для других заряженных частиц. Поэтому альфа-излучение относится к плотноионизирующим и альфа-частица имеет незначительную проникающую способность: в воздухе - до 3 см, в мышечной ткани, воде - около 50 мкм, в костной ткани, алюминии - около. 17 мкм. Внешнее облучение альфа-частицами не представляет опасности, поскольку последние не проникают глубже отмирающих слоев кожного эпителия. Очень опасно внутреннее альфа-облучение при инкорпорировании радионуклидов. Защита при работе с альфа-излучателями должна быть направлена на исключение любой потенциальной возможности попадания радиоактивных веществ в организм с вдыхаемым воздухом, пищей и водой.

 

В отличие от альфа-излучающих радионуклидов, бета-излучатели рассеяны по всей таблице Менделеева, начиная от водорода и до трансурановых элементов. Средняя энергия бета-частиц ≤ 3 МэВ. При прохождении бета-частиц через вещество имеют место упругие и неупругие взаимодействия с атомами среды. Упругие взаимодействия заключаются в том, что сумма кинетических энергий взаимодействующих частиц после взаимодействия остается неизменной. При неупругом взаимодействии часть энергии взаимодействующих частиц передается образовавшимся свободным частицам или квантам (неупругое рассеивание, ионизация и возбуждение атомов, возбуждение ядер, тормозное излучение). По радиобиологическим характеристикам бета-излучение относится к редкоионизирующим, удельная плотность ионизации примерно в 1000 раз меньше, чем у альфа-излучения. Несмотря на это, внешнее облучение бета-частицами представляет опасность для человека. Критические органы - кожа и хрусталик глаза. Пробег бета-частиц в воздухе - до 11 м, в мышечной ткани, воде - около 17 мм, в костной ткани, алюминии - 5,5 мм. При взаимодействии бета-излучения с веществом возникает тормозное электромагнитное излучение. Выход его пропорционален атомному номеру и плотности вещества, поэтому для защиты используют вещества с малым атомным номером - алюминий, органическое стекло, воду. При высокой активности бета-источника тормозное излучение может быть настолько интенсивным, что требуется защита и от него, т.е. к легкому материалу защиты от бета-излучения необходимо добавить еще один слой из тяжелых материалов, например, свинца.

 

Рентгеновское и гамма-излучения относятся к электромагнитным. Рентгеновское представляет собой совокупность характеристического и тормозного излучений (характеристическое излучение испускается при изменении энергетического состояния атома, тормозное - при изменении кинетической энергии заряженных частиц). Возникает в защите источников бета-излучения, рентгеновских трубках, ускорителях электронов и т.д.

R-излучение получают в рентгеновской трубке при торможении электронов. Катод с нитью накала испускает электроны, которые ускоряясь в электрическом поле, тормозятся на аноде. При торможении происходит преобразование энергии, причем 98-99% ее переходит в тепловую (нагрев анода), а 1-2% преобразуется в тормозное излучение (в данном случае - рентгеновское). Мощность дозы тормозного R-излучения зависит от:

· силы тока

· материала анода (атомного номера)

· напряжения на трубке

Источниками R-излучения являются все электровакуумные приборы высоких напряжений, телевизионные трубки, мониторы, усилительные лампы, приборы СВЧ-диапазона, электронно-лучевые установки для резки и сварки металлов в вакууме (неиспользуемое R-излучение), а также ускорительные устройства, работающие на тормозный пучок, микротроны, линейные ускорители и, конечно, рентгеновские трубки (используемое R-излучение).

Гамма-излучение испускается при ядерных превращениях:

· радиоактивном распаде (бета- и альфа-распады);

· аннигиляции электронов и позитронов;

· делении ядер - при этом осколки находятся в возбужденном состоянии, следствием чего является испускание гамма-квантов;

· взаимодействии нейтронов с веществом.

Принципы взаимодействия рентгеновского и гамма-излучений с веществом идентичны. Эти излучения называют косвенноионизирующими, т.к. процесс ионизации опосредован через ряд первичных эффектов, основными из которых являются:

1. Фотоэффект - вместо фотона после его взаимодействия с веществом излучается электрон (при низкой энергии (1 – 500 КэВ) кванта). Энергия падающего кванта полностью поглощается веществом, в результате появляются свободные электроны, обладающие определенной кинетической энергией, величина которой равна энергии кванта излучения за вычетом работы выхода данного электрона. Свободный электрон, ассоциируясь с нейтральным атомом, порождает отрицательный ион.

 

Рис. 2. Схема фотоэффекта

 

Фотоэффект характерен только для длинноволнового рентгеновского излучения. Его вклад во взаимодействие пропорционален Z ядер атомов (~Z3).

2. С повышением энер­гии излучения вероятность фотоэффекта очень быстро уменьшается, и для излучений с энергией около 1 МэВ, его вкладом во взаимодействие можно пренебречь; главную роль при этом играет другой способ размена энергии — эффект Комптона.

Комптоновский эффект – энергия кванта частично поглощаются веществом, в результате образуется электрон и рассеянное излучение, энергия которого всегда меньше энергии первичного излучения. При этом эффекте происходит рассеяние падающего фотона излучения электроном атома, которому передается лишь часть энергии фотона.

 

Рис. 3. Схема Комптон-эффекта

 

Так как направление движения фотона отличается от первоначального, то говорят о рассеянии фотона на электроне. В дальнейшем фотон может вновь претерпевать Комптон-эффект и т. д.

Поэтому в отличие от фотоэлектронов энергия электронов отдачи, образующихся при эффекте Комптона, изменяется в широких пределах (от нуля до некоторого максимального значения). Средняя их энергия возрастает с увеличением энергии падающего излучения. Доля энергии, поглощенной комптоновскими электронами, в общем количестве поглощенной энергии увеличивается с жесткостью излучения.

3. Наконец, третий вид взаимодействия излучения с веществом - эффект образования заряженных пар - характеризуется возможностью превращения γ -кванта большой энергии (>1,02 Мэв) в пару частиц - электрон и позитрон. Энергия гамма-кванта преобразуется в энергию заряженных частиц - электрона и позитрона (при большой энергии гамма-кванта). Этот процесс вызывается столкновением γ-кванта с какой-либо заряженной частицей, например атомным ядром, в поле которой и образуется электронно-позитронная пара. Относительный вклад этого вида взаимодействия изменяется пропорционально Z3 и поэтому для тяжелых элементов он больше, чем для легких.

Рис. 4. Схема образования электронно-позитронных пар

Следовательно, в зависимости от энергии падающего излучения преобладает тот или иной вид его взаимодействия с веществом. В большинстве случаев при облучении биологических объектов энергия используемого электромагнитного излучения находится в диапазоне 0,2—2 МэВ, поэтому наибольшей вероятностью обладает Комптон-эффект.

По радиобиологической характеристике R и гамма-излучения относятся к редкоионизирующим. Это проникающие излучения, имеют большие значения длины свободного пробега, который зависит от энергии излучения (в воздухе - до несколько км, в теле человека ослабляется в 3-4 раза). Средняя длина их пробега в веществе зависит также от его плотности. Она минимальна в материалах, подобных свинцу, используемых обычно в качестве защитных экранов. Защита от проникающего излучения основана на использовании материалов, содержащих тяжелые элементы - свинец, обедненный уран. Для стационарной защиты применяется монолитный гидратированный бетон, в рентгеновских кабинетах - баритовая штукатурка.



Поделиться:


Последнее изменение этой страницы: 2016-12-30; просмотров: 684; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.188.218.184 (0.077 с.)