Что такое операционная система 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Что такое операционная система



Лекция 1:Введение

Аннотация: В данной лекции вводится понятие операционной системы; рассматривается эволюция развития операционных систем; описываются функции операционных систем и подходы к построению операционных систем.

Ключевые слова: операционная система (ОС), анализ, микропроцессор, прерывание, виртуальная машина, менеджер ресурсов,non-von neumann, полупроводниковые элементы, транзистор, лампа, приостановка выполнения, пакетная система, язык управления заданиями, интегральная схема, пакет заданий, simultaneous, peripheral operation, устройство последовательного доступа,исключительная ситуация, системный вызов, ОС с разделением времени, программная совместимость, сетевая ОС, распределенная ОС, system call, машинные регистры, kernel mode, hardware interrupt, монолитное ядро, микроядерная архитектура, microkernel, mach,многозадачная ОС, многозадачный режим, preemptive, многопользовательская ОС, защита персональных данных, многопроцессорная ОС, децентрализовано, система реального времени

Операционная система (ОС) – это программа, которая обеспечивает возможность рационального использования оборудования компьютера удобным для пользователя образом. Вводная лекция рассказывает о предмете, изучаемом в рамках настоящего курса. Сначала мы попытаемся ответить на вопрос, что такое ОС. Затем последует анализ эволюции ОС и рассказ о возникновении основных концепций и компонентов современных ОС. В заключение будет представлена классификация ОС с точки зрения особенностей архитектуры и использования ресурсов компьютера.

Что такое операционная система

Структура вычислительной системы

Из чего состоит любая вычислительная система? Во-первых, из того, что в англоязычных странах принято называть словом hardware, или техническое обеспечение: процессор, память, монитор, дисковые устройства и т.д., объединенные магистральным соединением, которое называется шиной. Некоторые сведения об архитектуре компьютера имеются в приложении 1 к настоящей лекции.

Во-вторых, вычислительная система состоит из программного обеспечения. Все программное обеспечение принято делить на две части: прикладное и системное. К прикладному программному обеспечению, как правило, относятся разнообразные банковские и прочие бизнес-программы, игры, текстовые процессоры и т. п. Под системным программным обеспечением обычно понимают программы, способствующие функционированию и разработке прикладных программ. Надо сказать, что деление на прикладное и системное программное обеспечение является отчасти условным и зависит от того, кто осуществляет такое деление. Так, обычный пользователь, неискушенный в программировании, может считать Microsoft Word системной программой, а, с точки зрения программиста, это – приложение. Компилятор языка Си для обычного программиста – системная программа, а для системного – прикладная. Несмотря на эту нечеткую грань, данную ситуацию можно отобразить в виде последовательности слоев (см. рис. 1.1), выделив отдельно наиболее общую часть системного программного обеспечения – операционную систему:

Рис. 1.1. Слои программного обеспечения компьютерной системы

Что такое ОС

Большинство пользователей имеет опыт эксплуатации операционных систем, но тем не менее они затруднятся дать этому понятию точное определение. Давайте кратко рассмотрим основные точки зрения.

Основные понятия, концепции ОС

В процессе эволюции возникло несколько важных концепций, которые стали неотъемлемой частью теории и практики ОС. Рассматриваемые в данном разделе понятия будут встречаться и разъясняться на протяжении всего курса. Здесь дается их краткое описание.

Системные вызовы

В любой операционной системе поддерживается механизм, который позволяет пользовательским программам обращаться к услугам ядра ОС. В операционных системах наиболее известной советской вычислительной машины БЭСМ-6 соответствующие средства "общения" с ядром назывались экстракодами, в операционных системах IBM они назывались системными макрокомандами и т.д. В ОС Unix такие средства называют системными вызовами.

Системные вызовы (system calls) – это интерфейс между операционной системой и пользовательской программой. Они создают, удаляют и используют различные объекты, главные из которых – процессы и файлы. Пользовательская программа запрашивает сервис у операционной системы, осуществляя системный вызов. Имеются библиотеки процедур, которые загружают машинные регистры определенными параметрами и осуществляют прерывание процессора, после чего управление передается обработчику данного вызова, входящему в ядро операционной системы. Цель таких библиотек – сделать системный вызов похожим на обычный вызов подпрограммы.

Основное отличие состоит в том, что при системном вызове задача переходит в привилегированный режим или режим ядра (kernel mode). Поэтому системные вызовы иногда еще называют программными прерываниями, в отличие от аппаратных прерываний, которые чаще называют просто прерываниями.

В этом режиме работает код ядра операционной системы, причем исполняется он в адресном пространстве и в контексте вызвавшей его задачи. Таким образом, ядро операционной системы имеет полный доступ к памяти пользовательской программы, и при системном вызове достаточно передать адреса одной или нескольких областей памяти с параметрами вызова и адреса одной или нескольких областей памяти для результатов вызова.

В большинстве операционных систем системный вызов осуществляется командой программного прерывания (INT). Программное прерывание – это синхронное событие, которое может быть повторено при выполнении одного и того же программного кода.

Прерывания

Прерывание (hardware interrupt) – это событие, генерируемое внешним (по отношению к процессору) устройством. Посредством аппаратных прерываний аппаратура либо информирует центральный процессор о том, что произошло какое-либо событие, требующее немедленной реакции (например, пользователь нажал клавишу), либо сообщает о завершении асинхронной операции ввода-вывода (например, закончено чтение данных с диска в основную память). Важный тип аппаратных прерываний – прерывания таймера, которые генерируются периодически через фиксированный промежуток времени. Прерывания таймера используются операционной системой при планировании процессов. Каждый тип аппаратных прерываний имеет собственный номер, однозначно определяющий источник прерывания. Аппаратное прерывание – это асинхронное событие, то есть оно возникает вне зависимости от того, какой код исполняется процессором в данный момент. Обработка аппаратного прерывания не должна учитывать, какой процесс является текущим.

Исключительные ситуации

Исключительная ситуация (exception) – событие, возникающее в результате попытки выполнения программой команды, которая по каким-то причинам не может быть выполнена до конца. Примерами таких команд могут быть попытки доступа к ресурсу при отсутствии достаточных привилегий или обращения к отсутствующей странице памяти. Исключительные ситуации, как и системные вызовы, являются синхронными событиями, возникающими в контексте текущей задачи. Исключительные ситуации можно разделить на исправимые и неисправимые. К исправимым относятся такие исключительные ситуации, как отсутствие нужной информации в оперативной памяти. После устранения причины исправимой исключительной ситуации программа может выполняться дальше. Возникновение в процессе работы операционной системы исправимых исключительных ситуаций считается нормальным явлением. Неисправимые исключительные ситуации чаще всего возникают в результате ошибок в программах (например, деление на ноль). Обычно в таких случаях операционная система реагирует завершением программы, вызвавшей исключительную ситуацию.

Файлы

Файлы предназначены для хранения информации на внешних носителях, то есть принято, что информация, записанная, например, на диске, должна находиться внутри файла. Обычно под файлом понимают именованную часть пространства на носителе информации.

Главная задача файловой системы (file system) – скрыть особенности ввода-вывода и дать программисту простую абстрактную модель файлов, независимых от устройств. Для чтения, создания, удаления, записи, открытия и закрытия файлов также имеется обширная категория системных вызовов (создание, удаление, открытие, закрытие, чтение и т.д.). Пользователям хорошо знакомы такие связанные с организацией файловой системы понятия, как каталог, текущий каталог, корневой каталог, путь. Для манипулирования этими объектами в операционной системе имеются системные вызовы. Файловая система ОС описана в лекциях 11–12.

Процессы, нити

Концепция процесса в ОС одна из наиболее фундаментальных. Процессы подробно рассмотрены в лекциях 2–7. Там же описаны нити, или легковесные процессы.

Монолитное ядро

По сути дела, операционная система – это обычная программа, поэтому было бы логично и организовать ее так же, как устроено большинство программ, то есть составить из процедур и функций. В этом случае компоненты операционной системы являются не самостоятельными модулями, а составными частями одной большой программы. Такая структура операционной системы называется монолитным ядром (monolithic kernel). Монолитное ядро представляет собой набор процедур, каждая из которых может вызвать каждую. Все процедуры работают в привилегированном режиме. Таким образом, монолитное ядро – это такая схема операционной системы, при которой все ее компоненты являются составными частями одной программы, используют общие структуры данных и взаимодействуют друг с другом путем непосредственного вызова процедур. Для монолитной операционной системы ядро совпадает со всей системой.

Моноли́тное ядро́ — классическая и, на сегодняшний день, наиболее распространённая архитектура ядер операционных систем. Монолитные ядра предоставляют богатый набор абстракций оборудования. Все части монолитного ядра работают в одном адресном пространстве.

Монолитные ядра имеют долгую историю развития и усовершенствования и, на данный момент, являются наиболее архитектурно зрелыми и пригодными к эксплуатации. Вместе с тем, монолитность ядер усложняет их отладку, понимание кода ядра, добавление новых функций и возможностей, удаление «мёртвого», ненужного, унаследованного от предыдущих версий кода. «Разбухание» кода монолитных ядер также повышает требования к объёму оперативной памяти, требуемому для функционирования ядра ОС. Это делает монолитные ядерные архитектуры малопригодными к эксплуатации в системах, сильно ограниченных по объёму ОЗУ, например, встраиваемых системах, производственных микроконтроллерах и т. д.

Старые монолитные ядра требовали перекомпиляции при любом изменении состава оборудования. Большинство современных ядер, такие как OpenVMS, Linux, FreeBSD, NetBSD и Solaris, позволяют во время работы динамически (по необходимости) подгружать и выгружать модули, выполняющие часть функций ядра. Модульность ядра осуществляется на уровне бинарного образа, а не на архитектурном уровне ядра, так как динамически подгружаемые модули загружаются в адресное пространство ядра и в дальнейшем работают как интегральная часть ядра. Модульные монолитные ядра не следует путать с архитектурным уровнем модульности, присущим микроядрам и гибридным ядрам. Практически, динамическая загрузка модулей - это просто более гибкий способ изменения образа ядра во время выполнения — в отличие от перезагрузки с другим ядром. Модули позволяют легко расширить возможности ядра по мере необходимости. Динамическая подгрузка модулей помогает сократить размер кода, работающего в пространстве ядра, до минимума, например, свести к минимуму отпечаток ядра для встраиваемых устройств с ограниченными аппаратными ресурсами.

Виртуальные машины

В начале лекции мы говорили о взгляде на операционную систему как на виртуальную машину, когда пользователю нет необходимости знать детали внутреннего устройства компьютера. Он работает с файлами, а не с магнитными головками и двигателем; он работает с огромной виртуальной, а не ограниченной реальной оперативной памятью; его мало волнует, единственный он на машине пользователь или нет. Рассмотрим несколько иной подход. Пусть операционная система реализует виртуальную машину для каждого пользователя, но не упрощая ему жизнь, а, наоборот, усложняя. Каждая такая виртуальная машина предстает перед пользователем как голое железо – копия всего hardware в вычислительной системе, включая процессор, привилегированные и непривилегированные команды, устройства ввода-вывода, прерывания и т.д. И он остается с этим железом один на один. При попытке обратиться к такому виртуальному железу на уровне привилегированных команд в действительности происходит системный вызов реальной операционной системы, которая и производит все необходимые действия. Такой подход позволяет каждому пользователю загрузить свою операционную систему на виртуальную машину и делать с ней все, что душа пожелает.

Рис. 1.3. Вариант виртуальной машины

Первой реальной системой такого рода была система CP/CMS, или VM/370, как ее называют сейчас, для семейства машин IBM/370.

Недостатком таких операционных систем является снижение эффективности виртуальных машин по сравнению с реальным компьютером, и, как правило, они очень громоздки. Преимущество же заключается в использовании на одной вычислительной системе программ, написанных для разных операционных систем.

Микроядерная архитектура

Современная тенденция в разработке операционных систем состоит в перенесении значительной части системного кода на уровень пользователя и одновременной минимизации ядра. Речь идет о подходе к построению ядра, называемом микроядерной архитектурой (microkernel architecture) операционной системы, когда большинство ее составляющих являются самостоятельными программами. В этом случае взаимодействие между ними обеспечивает специальный модуль ядра, называемый микроядром. Микроядро работает в привилегированном режиме и обеспечивает взаимодействие между программами, планирование использования процессора, первичную обработку прерываний, операции ввода-вывода и базовое управление памятью.

Рис. 1.4. Микроядерная архитектура операционной системы

Остальные компоненты системы взаимодействуют друг с другом путем передачи сообщений через микроядро.

Основное достоинство микроядерной архитектуры – высокая степень модульности ядра операционной системы. Это существенно упрощает добавление в него новых компонентов. В микроядерной операционной системе можно, не прерывая ее работы, загружать и выгружать новые драйверы, файловые системы и т. д. Существенно упрощается процесс отладки компонентов ядра, так как новая версия драйвера может загружаться без перезапуска всей операционной системы. Компоненты ядра операционной системы ничем принципиально не отличаются от пользовательских программ, поэтому для их отладки можно применять обычные средства. Микроядерная архитектура повышает надежность системы, поскольку ошибка на уровне непривилегированной программы менее опасна, чем отказ на уровне режима ядра.

В то же время микроядерная архитектура операционной системы вносит дополнительные накладные расходы, связанные с передачей сообщений, что существенно влияет на производительность. Для того чтобы микроядерная операционная система по скорости не уступала операционным системам на базе монолитного ядра, требуется очень аккуратно проектировать разбиение системы на компоненты, стараясь минимизировать взаимодействие между ними. Таким образом, основная сложность при создании микроядерных операционных систем – необходимость очень аккуратного проектирования.

Микроядра типа ядра ОС Minix и GNU Hurd развиваются гораздо медленнее, чем Linux и ядро систем семейства BSD. По словам создателя Minix 3, Эндрю Таненбаума, он пытается «построить сверхнадёжную систему, которая может использоваться в том числе на серверах, которым необходимы годы безотказной работы»[2].

Классическим примером микроядерной ОС является Symbian OS. Это пример распространенной и отработанной микроядерной (a начиная c версии Symbian OS v8.1, и наноядерной) операционной системы.

Создателям Symbian OS удалось совместить эффективность и концептуальную стройность, несмотря на то, что современные версии этой системы предоставляют обширные возможности, в том числе средства для работы c потоковыми данными, стеками протоколов, критичными к латентности ядра, графикой и видео высокого разрешения. Разработчики Symbian вынесли практически все прикладные (т. e. выходящие за пределы компетенции ядра) задачи в модули-серверы, функционирующие в пользовательском адресном пространстве.

В ОС Windows NT версий 3.х микроядерная архитектура с сервисным процессом использовалась для подсистемы графики и пользовательского интерфейса. В частности, драйвер графической аппаратуры загружался в контекст сервисного процесса, а не ядра. Начиная с версии 4, от этого отказались, сервисный процесс сохранился только для управления консольными окнами командной строки, а собственно графическая подсистема вместе с драйвером аппаратуры (в том числе трёхмерной графики) переместилась в специально обособленный регион ядра ОС.

ОС Windows CE (и созданные на её основе сборки, такие, как Windows Mobile), будучи практически полностью совместимой (как подмножество) с Windows NT по вызовам и методам программирования приложений, тем не менее полностью отличается от Windows NT по внутренней архитектуре и является микроядерной ОС с выносом всех драйверов устройств, сетевых стеков и графической подсистемы в сервисные процессы.

Недостаток — плата за принудительное «переключение» процессов в ядре (переключение контекста); этот факт собственно и объясняет трудности в проектировании и написании ядер подобной конструкции. Эти недостатки способны обойти ОС, использующие архитектуру экзоядра, являющуюся дальнейшим развитием микроядерной архитектуры.

Смешанные системы

Все рассмотренные подходы к построению операционных систем имеют свои достоинства и недостатки. В большинстве случаев современные операционные системы используют различные комбинации этих подходов. Так, например, ядро операционной системы Linux представляет собой монолитную систему с элементами микроядерной архитектуры. При компиляции ядра можно разрешить динамическую загрузку и выгрузку очень многих компонентов ядра – так называемых модулей. В момент загрузки модуля его код загружается на уровне системы и связывается с остальной частью ядра. Внутри модуля могут использоваться любые экспортируемые ядром функции.

Другим примером смешанного подхода может служить возможность запуска операционной системы с монолитным ядром под управлением микроядра. Так устроены 4.4BSD и MkLinux, основанные на микроядре Mach. Микроядро обеспечивает управление виртуальной памятью и работу низкоуровневых драйверов. Все остальные функции, в том числе взаимодействие с прикладными программами, осуществляется монолитным ядром. Данный подход сформировался в результате попыток использовать преимущества микроядерной архитектуры, сохраняя по возможности хорошо отлаженный код монолитного ядра.

Наиболее тесно элементы микроядерной архитектуры и элементы монолитного ядра переплетены в ядре Windows NT. Хотя Windows NT часто называют микроядерной операционной системой, это не совсем так. Микроядро NT слишком велико (более 1 Мбайт), чтобы носить приставку "микро". Компоненты ядра Windows NT располагаются в вытесняемой памяти и взаимодействуют друг с другом путем передачи сообщений, как и положено в микроядерных операционных системах. В то же время все компоненты ядра работают в одном адресном пространстве и активно используют общие структуры данных, что свойственно операционным системамс монолитным ядром. По мнению специалистов Microsoft, причина проста: чисто микроядерный дизайн коммерчески невыгоден, поскольку неэффективен.

Таким образом, Windows NT можно с полным правом назвать гибридной операционной системой.

Классификация ОС

Существует несколько схем классификации операционных систем. Ниже приведена классификация по некоторым признакам с точки зрения пользователя.

Реализация многозадачности

По числу одновременно выполняемых задач операционные системы можно разделить на два класса:

· многозадачные (Unix, OS/2, Windows);

· однозадачные (например, MS-DOS).

Многозадачная ОС, решая проблемы распределения ресурсов и конкуренции, полностью реализует мультипрограммный режим в соответствии с требованиями раздела "Основные понятия, концепции ОС ".

Многозадачный режим, который воплощает в себе идею разделения времени, называется вытесняющим (preemptive). Каждой программе выделяется квант процессорного времени, по истечении которого управление передается другой программе. Говорят, что первая программа будет вытеснена. В вытесняющем режиме работают пользовательские программы большинства коммерческих ОС.

В некоторых ОС (Windows 3.11, например) пользовательская программа может монополизировать процессор, то есть работать в не вытесняющем режиме. Как правило, в большинстве систем не подлежит вытеснению код собственно ОС. Ответственные программы, в частности задачи реального времени, также не вытесняются. Более подробно об этом рассказано в лекции, посвященной планированию работы процессора.

По приведенным примерам можно судить о приблизительности классификации. Так, в ОС MS-DOS можно организовать запуск дочерней задачи и наличие в памяти двух и более задач одновременно. Однако эта ОС традиционно считается однозадачной, главным образом из-за отсутствия защитных механизмов и коммуникационных возможностей.

Многопроцессорная обработка

Вплоть до недавнего времени вычислительные системы имели один центральный процессор. В результате требований к повышению производительности появились многопроцессорные системы, состоящие из двух и более процессоров общего назначения, осуществляющих параллельное выполнение команд. Поддержка мультипроцессирования является важным свойством ОС и приводит к усложнению всех алгоритмов управления ресурсами. Многопроцессорная обработка реализована в таких ОС, как Linux, Solaris, Windows NT, и ряде других.

Многопроцессорные ОС разделяют на симметричные и асимметричные. В симметричных ОС на каждом процессоре функционирует одно и то же ядро, и задача может быть выполнена на любом процессоре, то есть обработка полностью децентрализована. При этом каждому из процессоров доступна вся память.

В асимметричных ОС процессоры неравноправны. Обычно существует главный процессор (master) и подчиненные (slave), загрузку и характер работы которых определяет главный процессор.

Зоопарк операционных систем

История операционных систем насчитывает уже более полувека. За это время было разработано огромное количество разнообразных операционных систем, но не все они получили широкую известность. В данном разделе мы вкратце коснемся девяти операционных систем. К некоторым из этих различающихся по своему типу систем мы еще вернемся на страницах книги.

Заключение

Мы рассмотрели различные взгляды на то, что такое операционная система; изучили историю развития операционных систем; выяснили, какие функции обычно выполняют операционные системы; наконец, разобрались в том, какие существуют подходы к построению операционных систем. Следующую лекцию мы посвятим выяснению понятия "процесс" и вопросам планирования процессов.


Приложение 1.

Некоторые сведения об архитектуре компьютера

Основными аппаратными компонентами компьютера являются: основная память, центральный процессор и периферийные устройства. Для обмена данными между собой эти компоненты соединены группой проводов, называемой магистралью (см.рис.1.5).

Рис. 1.5. Некоторые компоненты компьютера

Основная память используется для запоминания программ и данных в двоичном виде и организована в виде упорядоченного массива ячеек, каждая из которых имеет уникальный цифровой адрес. Как правило, размер ячейки составляет один байт. Типовые операции над основной памятью – считывание и запись содержимого ячейки с определенным адресом.

Выполнение различных операций с данными осуществляется изолированной частью компьютера, называемой центральнымпроцессором (ЦП). ЦП также имеет ячейки для запоминания информации, называемые регистрами. Их разделяют на регистры общего назначения и специализированные регистры. В современных компьютерах емкость регистра обычно составляет 4–8 байт. Регистры общего назначения используются для временного хранения данных и результатов операций. Для обработки информации обычно организовывается передача данных из ячеек памяти в регистры общего назначения, выполнение операции центральнымпроцессором и передача результатов операции в основную память.

Специализированные регистры используются для контроля работы процессора. Наиболее важными являются: программный счетчик, регистр команд и регистр, содержащий информацию о состоянии программы.

Программы хранятся в виде последовательности машинных команд, которые должен выполнять центральный процессор. Каждая команда состоит из поля операции и полей операндов, то есть тех данных, над которыми выполняется данная операция. Весь набор машинных команд называется машинным языком.

Выполнение программы осуществляется следующим образом. Машинная команда, на которую указывает программный счетчик, считывается из памяти и копируется в регистр команд. Здесь она декодируется, после чего исполняется. После выполнения команды программный счетчик указывает на следующую команду. Эти действия, называемые машинным циклом, затем повторяются.

Взаимодействие с периферийными устройствами

Периферийные устройства предназначены для ввода и вывода информации. Каждое устройство обычно имеет в своем составе специализированный компьютер, называемый контроллером или адаптером. Когда контроллер вставляется в разъем на материнской плате, он подключается к шине и получает уникальный номер (адрес). После этого контроллер осуществляет наблюдение за сигналами, идущими по шине, и отвечает на сигналы, адресованные ему.

Любая операция ввода-вывода предполагает диалог между ЦП и контроллером устройства. Когда процессору встречается команда, связанная с вводом-выводом, входящая в состав какой-либо программы, он выполняет ее, посылая сигналы контроллеру устройства. Это так называемый программируемый ввод-вывод.

В свою очередь, любые изменения с внешними устройствами имеют следствием передачу сигнала от устройства к ЦП. С точки зрения ЦП это является асинхронным событием и требует его реакции. Для того чтобы обнаружить такое событие, между машинными циклами процессор опрашивает специальный регистр, содержащий информацию о типе устройства, сгенерировавшего сигнал. Если сигнал имеет место, то ЦП выполняет специфичную для данного устройства программу, задача которой – отреагировать на это событие надлежащим образом (например, занести символ, введенный с клавиатуры, в специальный буфер). Такая программа называется программой обработки прерывания, а само событие прерыванием, поскольку оно нарушает плановую работу процессора. После завершения обработки прерывания процессор возвращается к выполнению программы. Эти действия компьютера называются вводом-выводом с использованием прерываний.

В современных компьютерах также имеется возможность непосредственного взаимодействия между контроллером и основной памятью, минуя ЦП, – так называемый механизм прямого доступа к памяти.

Лекция 1:Введение

Аннотация: В данной лекции вводится понятие операционной системы; рассматривается эволюция развития операционных систем; описываются функции операционных систем и подходы к построению операционных систем.

Ключевые слова: операционная система (ОС), анализ, микропроцессор, прерывание, виртуальная машина, менеджер ресурсов,non-von neumann, полупроводниковые элементы, транзистор, лампа, приостановка выполнения, пакетная система, язык управления заданиями, интегральная схема, пакет заданий, simultaneous, peripheral operation, устройство последовательного доступа,исключительная ситуация, системный вызов, ОС с разделением времени, программная совместимость, сетевая ОС, распределенная ОС, system call, машинные регистры, kernel mode, hardware interrupt, монолитное ядро, микроядерная архитектура, microkernel, mach,многозадачная ОС, многозадачный режим, preemptive, многопользовательская ОС, защита персональных данных, многопроцессорная ОС, децентрализовано, система реального времени

Операционная система (ОС) – это программа, которая обеспечивает возможность рационального использования оборудования компьютера удобным для пользователя образом. Вводная лекция рассказывает о предмете, изучаемом в рамках настоящего курса. Сначала мы попытаемся ответить на вопрос, что такое ОС. Затем последует анализ эволюции ОС и рассказ о возникновении основных концепций и компонентов современных ОС. В заключение будет представлена классификация ОС с точки зрения особенностей архитектуры и использования ресурсов компьютера.

Что такое операционная система



Поделиться:


Последнее изменение этой страницы: 2016-12-27; просмотров: 124; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.116.36.192 (0.048 с.)