Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Связь двоичной, восьмеричной и шестнадцатеричной систем счисления.Содержание книги
Поиск на нашем сайте
Восьмеричная и шестнадцатеричная системы счисления относятся к двоично-кодированным системам, основание которых представляют целые степени двойки: 23 - для восьмеричной и 24 - для шестнадцатеричной. Каждая восьмеричная цифра представляется триадой двоичных цифр, а каждая шестнадцатеричная цифра - тетрадой двоичных цифр. Перевод целых и дробных чисел из двоичной в восьмеричную и из двоичной в шестнадцатеричную системы счисления производится с учетом следующих таблиц: Таблица 1
Таблица 2
Для перевода двоичного числа в восьмеричную (шестнадцатеричную) систему счисления число разбивается на триады (тетрады) двоичных цифр. Причем для целого числа триады (тетрады) находятся, начиная с младшего разряда, двигаясь влево к старшему разряду. Если старшая триада (тетрада) не получается из-за нехватки цифр, то слева к числу приписывается нужное количество нулей. Для дробного числа триады (тетрады) находятся, начиная со старшего разряда, двигаясь вправо к младшему. Если количество разрядов не кратно трём (четырем), то справа приписывается нужное количество нулей. Далее каждой триаде (тетраде) ставится в соответствие восьмеричная (шестнадцатеричная) цифра. При обратном переводе вместо каждой восьмеричной (шестнадцатеричной) цифры записывается эквивалентная ей триада (тетрада) двоичных. Положение запятой между целой и дробной частями числа сохраняется. Нули слева от целой части и справа от дробной части опускаются.
Примеры:
= 36F4.B3416 г) A2E.С1D16 = 101000101110.1100000111012
2. Формы представления чисел в ЦВМ
В памяти ЦВМ числовая информация может быть представлена в различных формах. В случае с фиксированной запятой для всех чисел, над которыми выполняются операции, положение запятой строго зафиксировано между целой и дробной частями числа. Обычно в ЦВМ используются два способа расположения запятой: перед старшим разрядом, то есть целая часть числа равна нулю, и в операциях участвуют правильные дроби; после младшего разряда, то есть дробная часть числа равна нулю, и в операциях участвуют только целые числа.
Разрядная сетка с указанием номера разряда и его веса для дробного числа имеет вид:
Разрядная сетка для целого числа имеет вид:
Если целые числа представляются без знака, то диапазон их представления в заданной разрядной сетке может быть увеличен за счет использования разряда, отводимого под знак числа. Число с фиксированной запятой представляется следующим образом:
[Х]ф.з.=Х*Км, (2)
где: [Х]ф.з.- машинное представление числа с фиксированной запятой; Х - исходное число, Км - масштабный коэффициент, который выбирается из условий конкретной разрядной сетки и не должен допускать выхода исходных чисел и результатов вычислений за пределы допустимого диапазона. Масштабный коэффициент должен быть единым для всех обрабатываемых в машине чисел и получаемых результатов, он хранится отдельно от представляемых чисел и учитывается при выдаче конечного результата. Число в форме с фиксированной запятой должно удовлетворять следующему неравенству:
[X]ф.з.min £ [X]ф.з. £ [X]ф.з.max (3)
Если нарушена левая часть неравенства, то имеем машинный ноль; если нарушена правая часть неравенства, то произошло переполнение разрядной сетки. Представление чисел в форме с плавающей запятой позволяет избежать масштабирования исходных чисел, а также увеличить диапазон и точность представляемых чисел. Число в нормальной форме имеет вид: Х = m*q p, (4)
Где: q- основание СС, p -целое число - порядок числа Х, m -мантисса числа. Полулогарифмической эта форма представления называется потому, что в логарифмической форме представлено не всё число, а только его характеристика q. Поскольку, изменяя одновременно определённым образом мантиссу и порядок числа Х, можно по выражению (4) получить любое количество представлений числа Х, то на мантиссу m накладывается следующее ограничение, чтобы избежать неоднозначности в представлении чисел q -1 £ I mI £ 1. (5)
Если для числа Х в форме с плавающей запятой выполнены условия (5), то число Х называется нормализованным, мантисса представляется правильной дробью, а ее старший разряд с основанием q отличен от 0. Для двоичной СС неравенство (5) имеет вид:
0.100...0 £ lml £ 0.11...1. (5')
Разрядная сетка для числа с плавающей запятой состоит из двух частей: для порядка и для мантиссы.
Мантисса, удовлетворяющая условию (5') называется нормализованной, а операция преобразования ее к виду (5') называется нормализацией. Чтобы нормализовать мантиссу, ее нужно сдвигать вправо для целого числа и влево для дроби на столько разрядов, чтобы целая часть мантиссы была равна нулю, а старший разряд мантиссы был равен 1, после чего к порядку целого числа прибавить (а из порядка дроби вычесть) столько единиц, на сколько разрядов был произведен сдвиг. Для упрощения операций над порядками чисел с плавающей запятой, порядки представляют целыми положительными числами без знака, используются так называемые смещенные порядки. Чтобы получить смещенный порядок, нужно к исходному порядку p прибавить целое число - смещение М = 2 k, где k-число двоичных разрядов, используемых для модуля порядка. Смещенный порядок
Рсм = Р+М (6)
всегда является положительным. Для его представления необходимо такое же число разрядов, как и для модуля и знака порядка р.
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Последнее изменение этой страницы: 2016-12-16; просмотров: 712; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.188.245.152 (0.007 с.) |