Истинное и действительное значение физиз величины.



Мы поможем в написании ваших работ!


Мы поможем в написании ваших работ!



Мы поможем в написании ваших работ!


ЗНАЕТЕ ЛИ ВЫ?

Истинное и действительное значение физиз величины.



Метрология

«Метрология - это наука об измерениях» Измерения и метрология важны практически во всех аспектах человеческой деятельности, поскольку они используются везде, начиная от контроля за производством, измерения качества окружающей среды, оценки здоровья и безопасности, а также испытания качества материалов, пищевых продуктов и других товаров для обеспечения честной торговли и защиты потребителя.

Основные понятия и определения

Погрешность измерения - отклонение результата измерения от истинного значения измеряемой величины.

Точность измерений - их качество, отражающее близость их результатов к истинному значению измеряемой величины.

Правильность измерений - их качество, отражающее близость к нулю систематических погрешностей в их результатах.

Сходимость измерений - их качество, отражающее близость друг к другу результатов измерений, выполняемых в одинаковых условиях.

Воспроизводимость измерений - их качество, отражающее близость друг к другу результатов измерений, выполняемых в различных условиях (в разное время, в различных местах, разными методами и средствами). Ниже будут рассмотрены более подробно все важнейшие элементы, необходимые для осуществления процесса измерений и обеспечения единства измерений [6].

Объектом измерения является физическая величина, характеризующая одно из свойств физического объекта.

Физическая величина, подлежащая измерению, измеряемая или измеренная в соответствии с основной целью измерительной задачи, называется измеряемой физической величиной или просто измеряемой величиной [3].

Измеряемые величины - это величины непосредственно воспринимаемые средствами измерений. Их можно классифицировать с помощью различных признаков, основными из которых являются: природа величины, вид отражаемой стороны эмпирических объектов, метризуемость и изменяемость [8].

По природе измеряемые величины разделяются на 11 классов: электрические, магнитные, электромагнитные, механические, акустические, тепловые, оптические, химические, радиоактивные, пространственные и временные. Каждый класс включает конечное множество конкретных величин.

По виду отражаемой стороны эмпирических объектов каждый класс измеряемых величин разделяется на два подкласса: энергетические и вещественные величины. К энергетическим величинам относятся, например, сила электрического тока, электрическое напряжение, напряженность электрического поля, напряженность магнитного поля, механическая сила, давление и т.п. Метрологическая общность энергетических величин заключается в использовании при их измерении энергии объектов исследования. Вещественными величинами являются различные свойства веществ и материалов, а также параметры физических тел и объектов, например удельное электрическое сопротивление, диэлектрическая проницаемость, магнитная проницаемость, магнитное сопротивление, акустическое сопротивление и т.п. Метрологическая общность вещественных величин состоит в использовании при их измерении измерительных преобразований и других приемов косвенных измерений.

По признаку метризуемости измеряемые величины разделяются на непосредственно и косвенно метризуемые величины. К непосредственно метризуемым величинам относится около двух десятков физических величин, остальные являются косвенно метризуемыми величинами. Непосредственно метризуемые величины измеряются наиболее просто и с высокой точностью. Измерение косвенно метризуемых величин осуществляется с использованием различных функциональных связей и с преобразованием их в непосредственно метризуемые величины.

По признаку изменяемости выделяют состояния и изменения величин. Состояние величины в общем случае характеризуется размером величины, нахождение значения которого и является задачей измерения.

Классификация измерений.

Классификация измерений

Классификация средств измерений может проводиться по следующим критериям.

1. По характеристике точности измерения делятся на равноточные и неравноточные.

Равноточными измерениями физической величины называется ряд измерений некоторой величины, сделанных при помощи средств измерений (СИ), обладающих одинаковой точностью, в идентичных исходных условиях.

Неравноточными измерениями физической величины называется ряд измерений некоторой величины, сделанных при помощи средств измерения, обладающих разной точностью, и (или) в различных исходных условиях.

2. По количеству измерений измерения делятся на однократные и многократные.

3. По типу изменения величины измерения делятся на статические и динамические.

Статические измерения – это измерения постоянной, неизменной физической величины.

Динамические измерения – это измерения изменяющейся, непостоянной физической величины.

4. По предназначению измерения делятся на технические и метрологические.

Технические измерения – это измерения, выполняемые техническими средствами измерений.

Метрологические измерения – это измерения, выполняемые с использованием эталонов.

5. По способу представления результата измерения делятся на абсолютные и относительные.

Абсолютные измерения – это измерения, которые выполняются посредством прямого, непосредственного измерения основной величины и (или) применения физической константы. Относительные измерения – это измерения, при которых вычисляется отношение однородных величин, причем числитель является сравниваемой величиной, а знаменатель – базой сравнения (единицей).

6. По методам получения результатов измерения делятся на прямые, косвенные, совокупные и совместные.

Прямые измерения – это измерения, выполняемые при помощи мер, т. е. измеряемая величина сопоставляется непосредственно с ее мерой. Примером прямых измерений является измерение величины угла (мера – транспортир).

Косвенные измерения – это измерения, при которых значение измеряемой величины вычисляется при помощи значений, полученных посредством прямых измерений.

Совокупные измерения – это измерения, результатом которых является решение некоторой системы уравнений. Совместные измерения – это измерения, в ходе которых измеряется минимум две неоднородные физические величины с целью установления существующей между ними зависимости.

 

4.средства измерений. Юстировка .калибровка. поверка

Средство измерений — техническое средство, предназначенное для измерений, имеющее нормированные метрологические характеристики, воспроизводящее и (или) хранящее единицу физической величины, размер которой принимают неизменным (в пределах установленной погрешности) в течение известного интервала времени. Законом РФ «Об обеспечении единства измерений» средство измерений определено как техническое средство, предназначенное для измерений. Формальное решение об отнесении технического средства к средствам измерений принимает Федеральное агентство по техническому регулированию и метрологии.

 

Юстиро́вка (от нем. justieren выверять) — совокупность операций по выравниванию конструкций и конструктивных элементов (поверхностей, столбов, стоек и т. д.) вдоль некоторого направления («осевого»), а также по приведению меры, измерительного или оптического прибора, механизмов (или их части) в рабочее состояние, обеспечивающее точность, правильность и надежность их действия. При юстировке приборов — осуществляется проверка и наладка измерительного и/или оптического прибора, подразумевающая достижение верного взаиморасположения элементов прибора и правильного их взаимодействия.

Калибровка средства измерений — совокупность операций, выполняемых в целях определения действительных значений метрологических характеристик средств измерений.

Калибровка средств измерений производится преимущественно метрологическими службами юридических лиц с использованием эталонов, соподчинённых государственным эталонам единиц величин.

В России калибровочная деятельность регламентирована Законом РФ «Об обеспечении единства измерений» и многими другими подзаконными актами.

Поверка средств измерений — совокупность операций, выполняемых органами Государственной метрологической службы (другими уполномоченными на то органами, организациями) с целью определения и подтверждения соответствия характеристик средства измерения установленным требованиям.

 

Национальная система гост р

Система сертификации ГОСТ Р служит для организации и проведения работ по обязательной сертификации продуктов, работ и услуг и обеспечения требуемого уровня объективности и достоверности результатов сертификации. Она открыта для участия в ней федеральных органов, различных организаций, признающих и выполняющих ее правила. Взаимодействие системы сертификации ГОСТ Р с остальными системами сертификации, создаваемыми федеральными органами исполнительной власти, происходит на основе соглашений, заключаемых Ростехрегулированием с соответствующими организациями, в случае если иное не предусмотрено законодательными и прочими нормативными правовыми актами Российской Федерации Система ГОСТ Р имеет право взаимодействовать с международными, региональными и государственными системами сертификации других стран по вопросам, связанным с подтвержденим соответствия, включая признание сертификатов, знаков соответствия и протоколов испытаний.

 

Обьекты сертификации

В настоящее время каждый предприниматель знаком с процессом сертификации, поскольку она помогает не только получить дополнительные прибыли, но и значительно улучшить процесс производства или оказания услуг. При процедуре сертифицирования в качестве объектов сертификации могут выступать продукция, услуги, те или иные работы, системы качества, производство, технологический процесс. То есть объектов сертификации существует большое количество, на которые могут быть оформлены различные сертификаты.

Объекты сертификации принято классифицировать на группы. В первую группу объектов сертификации входят любые товары, производство и продукция. Во вторую группу входят услуги, работы. Услуги принято делить на материальные и нематериальные. Материальные услуги – это перевозка грузов и людей, банковские услуги, то есть такая услуга подразумевает восстановление или создание нового товара, перехода его в иное состояние. Нематериальная услуга касается восстановления здоровья, наполнение внутреннего мира, повышение профессионализма и многое другое.

Проведение сертификации

3.1. Сертификация продукции включает:

подачу заявки на сертификацию;

принятие решения по заявке, в том числе выбор схемы;

отбор, идентификацию образцов и их испытания;

оценку производства (если это предусмотрено схемой сертификации);

анализ полученных результатов и принятие решения о выдаче (об отказе в выдаче) сертификата соответствия (далее - сертификат);

выдачу сертификата;

Метрология

«Метрология - это наука об измерениях» Измерения и метрология важны практически во всех аспектах человеческой деятельности, поскольку они используются везде, начиная от контроля за производством, измерения качества окружающей среды, оценки здоровья и безопасности, а также испытания качества материалов, пищевых продуктов и других товаров для обеспечения честной торговли и защиты потребителя.

Основные понятия и определения

Погрешность измерения - отклонение результата измерения от истинного значения измеряемой величины.

Точность измерений - их качество, отражающее близость их результатов к истинному значению измеряемой величины.

Правильность измерений - их качество, отражающее близость к нулю систематических погрешностей в их результатах.

Сходимость измерений - их качество, отражающее близость друг к другу результатов измерений, выполняемых в одинаковых условиях.

Воспроизводимость измерений - их качество, отражающее близость друг к другу результатов измерений, выполняемых в различных условиях (в разное время, в различных местах, разными методами и средствами). Ниже будут рассмотрены более подробно все важнейшие элементы, необходимые для осуществления процесса измерений и обеспечения единства измерений [6].

Объектом измерения является физическая величина, характеризующая одно из свойств физического объекта.

Физическая величина, подлежащая измерению, измеряемая или измеренная в соответствии с основной целью измерительной задачи, называется измеряемой физической величиной или просто измеряемой величиной [3].

Измеряемые величины - это величины непосредственно воспринимаемые средствами измерений. Их можно классифицировать с помощью различных признаков, основными из которых являются: природа величины, вид отражаемой стороны эмпирических объектов, метризуемость и изменяемость [8].

По природе измеряемые величины разделяются на 11 классов: электрические, магнитные, электромагнитные, механические, акустические, тепловые, оптические, химические, радиоактивные, пространственные и временные. Каждый класс включает конечное множество конкретных величин.

По виду отражаемой стороны эмпирических объектов каждый класс измеряемых величин разделяется на два подкласса: энергетические и вещественные величины. К энергетическим величинам относятся, например, сила электрического тока, электрическое напряжение, напряженность электрического поля, напряженность магнитного поля, механическая сила, давление и т.п. Метрологическая общность энергетических величин заключается в использовании при их измерении энергии объектов исследования. Вещественными величинами являются различные свойства веществ и материалов, а также параметры физических тел и объектов, например удельное электрическое сопротивление, диэлектрическая проницаемость, магнитная проницаемость, магнитное сопротивление, акустическое сопротивление и т.п. Метрологическая общность вещественных величин состоит в использовании при их измерении измерительных преобразований и других приемов косвенных измерений.

По признаку метризуемости измеряемые величины разделяются на непосредственно и косвенно метризуемые величины. К непосредственно метризуемым величинам относится около двух десятков физических величин, остальные являются косвенно метризуемыми величинами. Непосредственно метризуемые величины измеряются наиболее просто и с высокой точностью. Измерение косвенно метризуемых величин осуществляется с использованием различных функциональных связей и с преобразованием их в непосредственно метризуемые величины.

По признаку изменяемости выделяют состояния и изменения величин. Состояние величины в общем случае характеризуется размером величины, нахождение значения которого и является задачей измерения.

истинное и действительное значение физиз величины.

Истинное значение физической величины – значение физической величины, которое идеальным образом характеризует в качественном и количественном отношении соответствующую физическую величину. Истинное значение физической величины может быть соотнесено с понятием абсолютной истины. Оно может быть получено только в результате бесконечного процесса измерений с бесконечным совершенствованием методов и средств измерений.

 

Действительное значение физической величины (англ. conventional true value (of a quantity)) – значение физической величины, полученное экспериментальным путем и настолько близкое к истинному значению, что в поставленной измерительной задаче может быть использовано вместо него.

Основные единицы измерения физических величин.

Основные единицы СИ и измеряемые ими величины:

Килограмм kg |кг Масса

Метр | m | м | Длина

Секунда | s | с | Время

| Ампер | А | А | Сила электрического тока

| Кельвин | К | К Термодинамическая температура*

Моль | mol | моль | Количество вещества

Кандела | cd | кд | Сила света

 

 

Классификация измерений.

Классификация измерений

Классификация средств измерений может проводиться по следующим критериям.

1. По характеристике точности измерения делятся на равноточные и неравноточные.

Равноточными измерениями физической величины называется ряд измерений некоторой величины, сделанных при помощи средств измерений (СИ), обладающих одинаковой точностью, в идентичных исходных условиях.

Неравноточными измерениями физической величины называется ряд измерений некоторой величины, сделанных при помощи средств измерения, обладающих разной точностью, и (или) в различных исходных условиях.

2. По количеству измерений измерения делятся на однократные и многократные.

3. По типу изменения величины измерения делятся на статические и динамические.

Статические измерения – это измерения постоянной, неизменной физической величины.

Динамические измерения – это измерения изменяющейся, непостоянной физической величины.

4. По предназначению измерения делятся на технические и метрологические.

Технические измерения – это измерения, выполняемые техническими средствами измерений.

Метрологические измерения – это измерения, выполняемые с использованием эталонов.

5. По способу представления результата измерения делятся на абсолютные и относительные.

Абсолютные измерения – это измерения, которые выполняются посредством прямого, непосредственного измерения основной величины и (или) применения физической константы. Относительные измерения – это измерения, при которых вычисляется отношение однородных величин, причем числитель является сравниваемой величиной, а знаменатель – базой сравнения (единицей).

6. По методам получения результатов измерения делятся на прямые, косвенные, совокупные и совместные.

Прямые измерения – это измерения, выполняемые при помощи мер, т. е. измеряемая величина сопоставляется непосредственно с ее мерой. Примером прямых измерений является измерение величины угла (мера – транспортир).

Косвенные измерения – это измерения, при которых значение измеряемой величины вычисляется при помощи значений, полученных посредством прямых измерений.

Совокупные измерения – это измерения, результатом которых является решение некоторой системы уравнений. Совместные измерения – это измерения, в ходе которых измеряется минимум две неоднородные физические величины с целью установления существующей между ними зависимости.

 

4.средства измерений. Юстировка .калибровка. поверка

Средство измерений — техническое средство, предназначенное для измерений, имеющее нормированные метрологические характеристики, воспроизводящее и (или) хранящее единицу физической величины, размер которой принимают неизменным (в пределах установленной погрешности) в течение известного интервала времени. Законом РФ «Об обеспечении единства измерений» средство измерений определено как техническое средство, предназначенное для измерений. Формальное решение об отнесении технического средства к средствам измерений принимает Федеральное агентство по техническому регулированию и метрологии.

 

Юстиро́вка (от нем. justieren выверять) — совокупность операций по выравниванию конструкций и конструктивных элементов (поверхностей, столбов, стоек и т. д.) вдоль некоторого направления («осевого»), а также по приведению меры, измерительного или оптического прибора, механизмов (или их части) в рабочее состояние, обеспечивающее точность, правильность и надежность их действия. При юстировке приборов — осуществляется проверка и наладка измерительного и/или оптического прибора, подразумевающая достижение верного взаиморасположения элементов прибора и правильного их взаимодействия.

Калибровка средства измерений — совокупность операций, выполняемых в целях определения действительных значений метрологических характеристик средств измерений.

Калибровка средств измерений производится преимущественно метрологическими службами юридических лиц с использованием эталонов, соподчинённых государственным эталонам единиц величин.

В России калибровочная деятельность регламентирована Законом РФ «Об обеспечении единства измерений» и многими другими подзаконными актами.

Поверка средств измерений — совокупность операций, выполняемых органами Государственной метрологической службы (другими уполномоченными на то органами, организациями) с целью определения и подтверждения соответствия характеристик средства измерения установленным требованиям.

 



Последнее изменение этой страницы: 2016-12-28; просмотров: 719; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 52.23.219.12 (0.009 с.)