Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Описание случайных погрешностей с помощью функций распределения↑ Стр 1 из 10Следующая ⇒ Содержание книги
Поиск на нашем сайте
Рассмотрим результат наблюдений Х за постоянной физической величиной Q как случайную величину, принимающую различные значения Z, в различных наблюдениях за ней. Значения Xi будем называть результатами отдельных наблюдений. Наиболее универсальный способ описания случайных величин заключается в отыскании их интегральных или дифференциальных функций распределения [1]. Под интегральной функцией распределения результатов наблюдений понимается зависимость вероятности того, что результат наблюдения Xi в i -м опыте окажется меньшим некоторого текущего значения х, от самой величины х: Fx (x) = P (Xi ≤ x) (4) Здесь и в дальнейшем большие буквы используются для обозначения случайных величин, а маленькие — значений, принимаемых случайными величинами. Поскольку функция распределения вероятности представляет собой вероятность, то она удовлетворяет следующим свойствам: • 0 ≤ Fx (x) ≤ 1 при x ∈ (–∞, +∞), • Fx (–∞) = 0, Fx (+∞) = 1, • Fx (x) — неубывающая функция x, • P(x 1 < X < x 2) = FX (x 2) – FX (x 1). На рис.2 показаны примеры функций распределения вероятности. Более наглядным является описание свойств результатов наблюдений и случайных погрешностей с помощью дифференциальной функции распределения, иначе называемой плотностью распределения вероятностей: f (x) = dFX (x)/ dx (5) Физический смысл f(x) состоит в том, что произведение f(x)dx представляет вероятность попадания случайной величины Х в интервал от х до х + dx, т.е. f (x) dx = P (x ≤ X ≤ x+dx) (6) Свойства плотности распределения вероятности: — вероятность достоверного события равна 1; иными словами, площадь, заключенная между кривой дифференциальной функции распределения и осью абсцисс, равна единице; — вероятность попадания случайной величины в интервал от x 1 до x 2. От дифференциальной функции распределения легко перейти к интегральной путем интегрирования: (7) Размерность плотности распределения вероятностей, как это следует из формулы (7), обратна размерности измеряемой величины, поскольку сама вероятность — величина безразмерная. Используя понятия функций распределения, легко получить выражения для вероятностей того, что результат наблюдений Х или случайная погрешность δ примет при проведении измерения некоторое значение в интервале [ x 1, x 2] или [δ1, δ2]. В терминах интегральной функции распределения имеем: P (x 1 < X ≤ x 2) = P -∞ < X ≤ x2 – P-∞ < X ≤ x 1 = Fx (x 2) – Fx (x 1) P (δ1 < δ ≤ δ2) = P -∞ < δ ≤ δ2 – P-∞ < δ ≤ δ1 = F δ(δ2) – F δ(δ1) т.е. вероятность попадания результата наблюдений или случайной погрешности в заданный интервал равна разности значений функции распределения на границах этого интервала. Заменяя в полученных формулах интегральные функции распределения на соответствующие плотности распределения вероятностей согласно выражению (7), получим формулы для искомой вероятности в терминах дифференциальной функции распределения: (8) (9) Таким образом, вероятность попадания результата наблюдения или случайной погрешности в заданный полуоткрытый интервал равна площади, ограниченной кривой распределения, осью абсцисс и перпендикулярами к ней на границах этого интервала. Необходимо отметить, что результаты наблюдений в значительной степени сконцентрированы вокруг истинного значения измеряемой величины и по мере приближения к нему элементы вероятности их появления возрастают. Это дает основание принять за оценку истинного значения измеряемой величины координату центра тяжести фигуры, образованной осью абсцисс и кривой распределения, и называемую математическим ожиданием результатов наблюдений: (10) В заключение можно дать более строгое определение постоянной систематической и случайной погрешностей. Систематической постоянной погрешностью называется отклонение математического ожидания результатов наблюдений от истинного значения измеряемой величины: θ = M [ X ] – Q (11) а случайной погрешностью — разность между результатом единичного наблюдения и математическим ожиданием результатов δ = X – M[ X ] (12) В этих обозначениях истинное значение измеряемой величины составляет Q = X – θ – δ (13)
|
||||
Последнее изменение этой страницы: 2016-12-28; просмотров: 100; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.135.208.236 (0.005 с.) |