Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Защитное зануление : принцип действия, область применения. 20 назначение нулевого защитного проводника, назначения заземления нейтрали обмоток источника тока.Содержание книги
Поиск на нашем сайте
Занулением называется преднамеренное электрическое соединение металлических частей электроустановки, которые могут оказаться под напряжением вследствие замыкания фазы на корпус, о заземленной нейтральной точкой обмотки источника тока. Это соединение осуществляется о помощью нулевого защитного проводника. Область применения аануления - трехфазные четырехпроводные сети напряжением до 1000 В с эаземленной нейтралью). Принципиальная схема зануления показана на рис. 1.
На рис.2 представлена эквивалентная схема системы зануления. На этой схеме: Zr, Zф, Zн - полные сопротивления трансформатора, фазного и нулевого защитного проводников; Хп - внешнее индуктивное сопротивление петли фаза-нуль. С целью упрощения сопротивлениями Z r, Хф, Хн, Хп можно пренебречь. В дальнейшем при рассмотрении теоретической части и выполнении предлагаемых примеров принимаем, что фазный и нулевой защитный проводники обладают лишь активными сопротивлениями Rф, Rн. В период с момента возникновения замыкания на корпус и до отключения поврежденной электроустановки все зануленные корпуса оказываются под напряжением относительно земли. Безопасность обеспечивается достаточно быстрым отключением поврежденной электроустановки с тем, чтобы при данной длительности воздействия ток через человека и напряжение прикосновения не превысили допустимых значений (табл. I). Кроме того, в указанный период напряжение корпуса относительно земли снижается благодаря наличию повторного заземления нулевого защитного проводника (НЗП). Таблица I Наибольшие допустимые напряжения прикосновения Uпр при аварийном режиме производственных электроустановок напряжением до 1000 В (ГОСТ 12.1.038-82)
Если повторное заземление НЗП отсутствует, то при замыкании одного из фазных проводов на корпус второй электроустановки в сети (рис. 3) напряжение этого корпуса относительно земли Uз2, B, так же, как и всего участка нулевого защитного проводника за местом замыкания (вправо от точки Б), будет равно падению напряжения в нулевом защитном проводнике па участке А-Б. , (1) где - ток короткого замыкания, проходящий по петле «фаза-ноль», А; - фазное напряжение сети, В.
Так как на практике , то .
Например, в сети 380/220 В при напряжение относительно земли всех зануленных корпусов электроустановок за местом замыкания составит = 147 В. При времени действия электрического тока (t > 0,3 с) это напряжение создает реальную опасность поражения людей. Если же нулевой защитный проводник будет иметь повторное заземление с сопротивлением , то при замыкании фазного провода на корпус электроустановки напряжение снизится до значения , где - ток, стекающий в землю через , А; - сопротивление заземления нейтрали, Ом. При этом нейтральная точка приобретает некоторое напряжение относительно земли , равное . В данном случае напряжение вычисляется по формуле , где - ток, протекающий по НЗП, А. Этот ток является частью тока , другая часть которого протекает через землю. Учитывая, что значительно больше Rn, и, следователъно, , принимаем, что = ; тогда . На рис.3 показано распределение напряжения нулевого защитного проводника по его длине в сети без повторного заземления (I) и с повторным его заземлением (П) при . Графики распределения напряжения вдоль НЗП при замыкании фазы на какой-либо из зануленных корпусов позволяют определять напряжения относительно земли всех электроустановок, входящих в данную систему зануления. При случайном обрыве НЗП, не имеющего повторного заземления, и замыкании фазы на корпус за местом обрыва напряжение относительно земли оборванного участка нулевого проводника и всех присоединенных к нему корпусов, в том числе корпусов исправных электроустановок, окажется равным фазному напряжению сети. Это напряжение будет существовать длительно, поскольку поврежденная электроустановка автоматически не отключится и ее будет трудно обнаружить, чтобы отключать вручную.
Если же НЗП будет иметь повторное заземление, то при его обрыве, например, между корпусами I и 2 (рис.3), через будет стекать ток в землю, благодаря чему напряжение зануленного корпуса 2 и других корпусов, находящихсяза местом обрыва, снизится до значения Однако при этом корпуса электроустановок, присоединенных к нулевому защитному проводнику до места обрыва, приобретут напряжение относительно земли
Следовательно, повторное заземление НЗП уменьшает опасность поражения током, возникшую в результате его обрыва и замыкания фазного провода на корпус электроустановки за местом обрыва, но не устраняет ее полностью. В сети, где применяется зануление, нельзя заземлить корпус электроустановки, не присоединив его к нулевому защитному проводнику. Одновременное зануление и заземление одного и того же корпуса, а точнее заземление зануленного корпуса, не только не опасно, а, наоборот, улучшает условия безопасности. В сети с изолированной нейтралью обмоток источника тока и без повторного заземления нулевого защитного проводника зануление обеспечит отключение поврежденной установки. Однако при замыкании фазного провода на землю между зануленным оборудованием, имеющим нулевой потенциал, и землей возникает напряжение , близкое к фазному напряжению сети . Оно будет существовать до ликвидации замыкания на землю или до отключения всей сети вручную. В сети с заземленной нейтралью при данном повреждении фазное напряжение разделится пропорционально между сопротивлением замыкания фазы на землю и заземления нейтрали . В связи с чем напряжение корпусов относительно земли уменьшится и будет равно падению напряжения на сопротивлении заземления нейтрали
где - ток замыкания на землю. Таким образом, заземление нейтрали источника тока обеспечивает снижение напряжения зануленных корпусов относительно земли до безопасного значения при замыкании фазы на землю.
|
||||||||||||||||||||||||||||||
Последнее изменение этой страницы: 2016-12-13; просмотров: 294; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.149.24.49 (0.01 с.) |