Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Типы проводников, применяемых в основных электрических цепях.Содержание книги
Поиск на нашем сайте
Основное электрическое оборудование электростанций и подстанций (генераторы, трансформаторы, синхронные компенсаторы) и аппараты (выключатели, разъединители и др.) соединяются между собой проводниками разного типа, которые образуют токоведущие части электрической установки. Рассмотрим типы проводников, применяемых на электростанциях и подстанциях в основных электрических цепях (рисунок 9.1). Цепь генератора на ТЭЦ (рисунок 9.1, а) В пределах турбинного отделения от выводов генератора G до фасадной стены (участок ВБ)токоведущие части выполняются шинным мостом из жестких голых алюминиевых шин или комплектным пофазно-экранированным токопроводом (в цепях генераторов мощностью 60МВт и выше). На участке БА между турбинным отделением и генераторным распределительным устройством (ГРУ) соединение выполняется шинным мостом или гибким подвесным токопроводом. Все соединения внутри закрытого РУ 6-10 кВ, включая сборные шины, выполняются жесткими голыми алюминиевыми шинами прямоугольного или коробчатого сечения. Соединение от ГРУ до выводов трансформатора связи Т1 (участок ИК) осуществляется шинным мостом или гибким подвесным токопроводом. Токоведущие части в РУ 35кВ и выше обычно выполняются сталеалюминевыми проводами АС. В некоторых конструкциях ОРУ часть или вся ошиновка может выполняться алюминиевыми трубами. Цепь трансформатора собственных нужд (Рисунок 9.1, а). От стены ГРУ до выводов Т2, установленного вблизи ГРУ, соединение выполняется жесткими алюминиевыми шинами. Если трансформатор собственных нужд устанавливается у фасадной стены главного корпуса, то участок ГД выполняется гибким токопроводом. От трансформатора до распределительного устройства собственных нужд (участок ЕЖ) применяется кабельное соединение.
В цепях линий 6-10кВ вся ошиновка до реактора LR и за ним, а также в шкафах КРУ выполнена прямоугольными алюминиевыми шинами. Непосредственно к потребителю отходят кабельные линии. Рисунок 9.1.Схемы главных цепей ТЭЦ (а) и АЭС (б)
В блоке генератор-трансформатор на АЭС участок АВ и отпайка к трансформатору собственных нужд БГ (рисунок 9.1, б) выполняются комплектным пофазно экранированным токопроводом. Для участка ЕД от Т2 до распределительного устройства собственных нужд применяется закрытый токопровод 6 кВ. В цепи резервного трансформатора собственных нужд участок ЖЗ может быть выполнен кабелем или гибким проводом. Выбор того или другого способа соединения зависит от взаимного расположения ОРУ, главного корпуса и резервного трансформатора Т3. Так же, как на ТЭЦ, вся ошиновка в РУ 35кВ и выше выполняется проводами АС.На подстанциях, в открытой части, могут применяться провода АС или жесткая ошиновка алюминиевыми тубами. Соединение трансформатора с закрытым РУ 6-10 кВ или с КРУ 6-10 кВ осуществляется гибким подвесным токопроводом, шинным мостом или закрытым комплектным токопроводом. В РУ 6-10 кВ применяется жесткая ошиновка (шины или трубы).
Выбор жестких шин Как указывалось выше, в закрытых РУ 6-10 кВ ошиновка и сборные шины выполняются жесткими алюминиевыми шинами. Медные шины из-за высокой их стоимости не применяются даже при больших токовых нагрузках. При токах до 3000 А применяются одно- и двухполосные шины. При больших токах рекомендуются шины коробчатого сечения, т.к. они обеспечивают меньшие потери от эффекта близости и поверхностного эффекта, а также лучшие условия охлаждения. Например, при токе 2650 А необходимы алюминиевые шины трехполосные размером 3(60х10) мм или коробчатые 2х695 мм2 с допустимым током 2670А. В первом случае общее сечение шин составляет 1800 мм2, во втором 1390 мм2. Как видно, допустимая плотность тока в коробчатых шинах значительно больше (1,92 вместо 1,47 А/мм2). Сборные шины и ответвления от них к электрическим аппаратам (ошиновка) 6-10 кВ из проводников прямоугольного или коробчатого профиля крепятся на опорных фарфоровых изоляторах. Шинодержатели, с помощью которых шины закреплены на изоляторах, допускают продольное смещение шин при их удлинении вследствие нагрева. При большой длине шин устанавливаются компенсаторы из тонких полосок того же материала, что и шины (рисунок 9.2). Концы шин на изоляторе имеют скользящее крепление через продольные овальные отверстия и шпильку с пружинящей шайбой. В местах присоединения к аппаратам изгибают шины или устанавливают компенсаторы, чтобы усилия, возникающие при температурных удлинениях шин, не передавались на аппарат.
Соединение шин по длине обычно осуществляется сваркой. Присоединение шин к медным (латунным) зажимам аппаратов производится с помощью переходных зажимов, предотвращающих образование электролитической пары медь-алюминий. Для лучшей теплоотдачи и удобства эксплуатации окрашивают: при переменном токе – фаза А в желтый, фаза В – в зеленый и фаза С – красный цвет; при постоянном токе положительная шина в красный, отрицательная – синий цвет. Выбор сечения шин производится по нагреву (по допустимому току в нормальном, послеаварийном режиме или режиме в период ремонтов.) При этом учитывается возможность неравномерного распределения токов между секциями шин. Условие выбора , =3191 А - определяется по наибольшей нагрузке секции.
Выбираем алюминиевые двухполосные шины прямоугольного сечения: - размеры шины 120∙10 (h=120 мм, b=10мм); - сечение одной полосы 1200 мм2; - масса одной полосы 3.245 кг/м; - допустимый ток 3200 А. Iдоп – допустимый ток на шины выбранного сечения с учетом поправки при расположении шин плашмя или температуре воздуха, отличной от принятой в таблицах (T0 ном=250С). В последнем случае: (9.1) Для неизолированных проводов и окрашенных шин принято Тдоп=700С, Т0ном=250С, тогда (9.2) где: · Iдоп.ном – допустимый ток по таблицам при температуре воздуха Т0 ном =250С; · Т0 – действительная температура воздуха (на ЗАЭС Т0 =25 0С); · Тдоп =700С – допустимая температура нагрева продолжительного режима. ; 3191 А<3200 А. Проверка шин на термическую стойкость при КЗ производится по условию: , где: · qmin – минимальное сечение по термической стойкости; , где: · С – функция, значения которой даются в справочных таблицах, С=90; · q – выбранное сечение.
|
||||||||
Последнее изменение этой страницы: 2016-12-13; просмотров: 2831; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.144.9.172 (0.006 с.) |