Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Температурные методы исследования стресса человека↑ ⇐ ПредыдущаяСтр 3 из 3 Содержание книги
Поиск на нашем сайте
В человеческом организме вследствие экзотермических биохимических процессов в клетках и тканях, а также за счет высвобождения энергии, связанной с синтезом ДНК и РНК, вырабатывается большое количество тепла-50-100 ккал/грамм. Это тепло распределяется внутри организма с помощью циркулирующей крови и лимфы. Кровообращение выравнивает температурные градиенты. Кровь благодаря высокой теплопроводности, не изменяющейся от характера движения, способна осуществлять интенсивный теплообмен между центральными и периферическими областями организма. Наиболее теплой является смешанная венозная кровь. Она мало охлаждается в легких и, распространяясь по большому кругу кровообращения, поддерживает оптимальную температуру тканей, органов и систем. Температура крови, проходящей по кожным сосудам, снижается на 2-3°. При патологии или стрессе система кровообращения нарушается. Изменения возникают уже потому, что сжатие сосудов при стрессе, например, в конечностях, уменьшает перфузию крови и, следовательно, теплопроводность, что отражается на термограмме появлением очага гипотермии. Термография — метод функциональной диагностики, основанный на регистрации инфракрасного излучения человеческого тела, пропорционального его температуре. Распределение и интенсивность теплового излучения в норме определяются особенностью физиологических процессов, происходящих в организме, в частности как в поверхностных, так и в глубоких органах. Различные патологические состояния характеризуются термоасимметрией и наличием температурного градиента между зоной повышенного или пониженного излучения и симметричным участком тела, что отражается на термографической картине. В литературе описывается несколько методов тепловизионных исследований. Выделяют два основных вида термографии: 1.Контактная холестерическая термография. 2.Телетермография. Телетермография основана на преобразовании инфракрасного излучения тела человека в электрический сигнал, который визуализируется на экране тепловизора. Контактная холестерическая термография опирается на оптические свойства холестерических жидких кристаллов, которые проявляются изменением окраски в радужные цвета при нанесении их на термоизлучающие поверхности. Наиболее холодным участкам соответствует красный цвет, наиболее горячим—синий. Нанесенные на кожу композиции жидких кристаллов, обладая термочувствительностью в пределах 0.001 С, реагируют на тепловой поток путем перестройки молекулярной структуры. После рассмотрения различных методов тепловидения встает вопрос о способах интерпретации термографического изображения. Существуют визуальный и количественный способы оценки тепловизионной картины. Визуальная (качественная) оценка термографии позволяет определить расположение, размеры, форму и структуру очагов повышенного излучения, а также ориентировочно оценивать величину инфракрасной радиации. Однако при визуальной оценке невозможно точное измерение температуры. Кроме того, сам подъем кажущейся температуры в термографе оказывается зависимым от скорости развертки и величины поля. Затруднения для клинической оценки результатов термографии заключаются в том, что подъем температуры на небольшом по площади участке оказывается малозаметным. В результате небольшой по размерам патологический очаг может не обнаруживаться. Радиометрический подход весьма перспективен. Он предполагает использование самой современной техники и может найти применение для проведения массового профилактического обследования, получения количественной информации о патологических процессах в исследуемых участках, а также для оценки эффективности термографии. Тепловизоры, применяемые сейчас в тепловизионной диагностике, представляют собой сканирующие устройства, состоящие из систем зеркал, фокусирующих инфракрасное излучение от поверхности тела на чувствительный приемник. Такой приемник требует охлаждения, которое обеспечивает высокую чувствительность. В приборе тепловое излучение последовательно преобразуется в электрический сигнал, усиливающийся и регистрирующийся как полутоновое изображение. В настоящее время применяются тепловизоры с оптико-механическим сканированием, в которых за счет пространственной развертки изображения осуществляется последовательное преобразование инфракрасного излучения в видимое. Общим недостатком существующих тепловизоров является необходимость их охлаждения до температуры жидкого азота, что обусловливает их ограниченное применение. В 1982 году ученые предложили новый тип инфракрасного радиометра. В его основе - пленочный термоэлемент, работающий при комнатной температуре и обладающий постоянной чувствительностью в широком диапазоне длин волн. Недостатком термоэлемента является низкая чувствительность и большая инерционность. В заключении, нужно указать на основные пути и перспективы совершенствования тепловизионной техники. Это, во-первых, повышение уровня четкости и степени контрастности тепловизионных изображений, создание видеоконтрольных устройств, дающих увеличенное воспроизведение теплового изображения, а также дальнейшая автоматизация исследований и применение ЭВМ. Во-вторых, совершенствование методики тепловизионных исследований различных видов заболеваний. Тепловизор должен давать информацию о площади кожного участка с измененной температурой и координатах фиксированного теплового поля. Предполагается создать аппараты, в которых можно произвольно менять увеличение изображения, фиксировать амплитудное распределение температуры по горизонтальным и вертикальным осям. Кроме того, необходимо сконструировать прибор, способный интенсифицировать развитие исследований механизма теплопередачи и корреляции наблюдаемых тепловых полей с источниками тепла внутри тела человека. Это позволит разработать унифицированные методики тепловизионной диагностики. В-третьих, следует продолжить поиск новых принципов работы тепловизоров, работающих в более длинноволновых областях спектра с целью регистрации максимума теплового излучения тела. В перспективе также возможно совершенствование аппаратуры для сверхчувствительного приема электромагнитных колебаний дециметровых, сантиметровых и миллиметровых диапазонов.
|
||||
Последнее изменение этой страницы: 2016-12-09; просмотров: 79; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.15.4.135 (0.006 с.) |