Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Правило взаимодействие различных факторов.↑ Стр 1 из 4Следующая ⇒ Содержание книги
Поиск на нашем сайте
Оптимальная зона и пределы выносливости организмов по отношению к какому-либо фактору среды могут смещаться в зависимости от того, с какой силой и в каком сочетании действуют одновременно другие факторы. Примеры: 1. Жару легче переносить в сухом, а не во влажном воздухе. 2. Угроза замерзания значительно выше при морозе с сильным ветром, чем в безветренную погоду. Таким образом, один и тот же фактор в сочетании с другими оказывает неодинаковое экологическое воздействие 7. Закон конкурентного исключения Г.Ф. Гаузе. Два вида не могут занимать одну и ту же экологическую нишу. Победителем в конкурентной борьбе оказывается, как правило, тот вид, который в данной экологической обстановке имеет хотя бы небольшие преимущества перед другим, т. е. больше приспособлен к условиям окружающей среды, поскольку даже близкие виды никогда не совпадают по всему экологическому спектру. . Закон минимума ( Ю. Либих в 1840): при стационарном состоянии лимитирующим будет то вещество, доступные количества которого наиболее близки к необходимому минимуму. 9. Закон толерантности (В.Шелфорд, 1913): отсутствие или невозможность развития экосистемы определяется не только недостатком, но и избытком любого из факторов (тепло, свет, вода). Следовательно, организмы характеризуются как экологическим минимумом, так и максимумом. Слишком много хорошего тоже плохо. Диапазон между двумя величинами составляет пределы толерантности, в которых организм нормально реагирует на влияние среды. 10. Принцип (закон) Олли. ( Численность популяции как лимитирующий фактор): «степень агрегации (так же, как и общая плотность), при которой наблюдается оптимальный рост и выживание популяции, варьирует в зависимости от вида и условий, поэтому как „недонаселенность“ (или отсутствие агрегации), так и перенаселенность может оказывать лимитирующее влияние». Важные следствия закона Шелфорда: (1). Первый экологический принцип Тинемана: существование особи, популяции, и плотность популяции данного вида живых организмов определяет тот из факторов среды, который действует на стадию развития, имеющую наименьшую экологическую валентность, и при этом действует в количествах и интенсивности, наиболее далеких от оптимума. Пример: Климат Памира сходен с климатом Анд, однако ламы здесь не приживаются, поскольку срок появления их молодняка приходится на самый неблагоприяный климатический период. (2 ). Ограничивающие факторы среды определяют географический ареал вида. В нашей стране проникновение древесных пород на север ограничивается температурой, на юг – влажность и осадками. 11. Правило (закон) географичекой зональности суши В.В.Докучаева. При движении с севера на юг в широтном направлении вследствие непрерывного изменения лимитирующих факторов среды возникают географические ландшафтные природные зоны или биомы, плавно переходящие одна в другую.
АДАПТАЦИИ К ТЕМПЕРАТУРЕ По степени адаптации растений к условиям крайнего дефицита тепла можно выделить три группы: 1) нехолодостойкие растения — сильно повреждаются или гибнут при температурах выше точки замерзания воды. Гибель связана с инактивацией ферментов, нарушением обмена нуклеиновых кислот и белков, проницаемости мембран и прекращением тока ассимилятов. Это растения дождевых тропических лесов, водоросли теплых морей; 2) неморозостойкие растения — переносят низкие температуры, но гибнут, как только в тканях начинает образовываться лед. При наступлении холодного времени года у них повышается концентрация осмотически активных веществ в клеточном соке и цитоплазме, что понижает точку замерзания до —5...—7°С. Вода в клетках может охлаждаться ниже точки замерзания без немедленного образования льда. Переохлажденное состояние неустойчиво и длится чаще всего несколько часов, что, однако, позволяет растениям переносить заморозки. Таковы некоторые вечнозеленые субтропические виды. В период вегетации все листостебельные растения неморозостойки; 3) льдоустойчивые, или морозоустойчивые растения— произрастают в областях с сезонным климатом, с холодными зимами. Во время сильных морозов надземные органы деревьев и кустарников промерзают, но тем не менее сохраняют жизнеспособность. Растения подготавливаются к перенесению морозов постепенно, проходя предварительную закалку после того, как заканчиваются ростовые процессы. Закалка заключается в накоплении в клетках сахаров (до 20—30%), производных углеводов, некоторых аминокислот и других защитных веществ, связывающих воду. При этом морозоустойчивость клеток повышается, так как связанная вода труднее оттягивается образующимися в тканях кристаллами льда. По степени адаптации к высоким температурам можно выделить следующие группы растительных организмов: 1) нежаростойкие виды — повреждаются уже при + 30... + 40°С (эукариотические водоросли, водные цветковые, наземные мезофиты ); 2) жаровыносливые эукариоты — растения сухих местообитаний с сильной инсоляцией (степей, пустынь, саванн, сухих субтропиков и т. п.); переносят получасовое нагревание до + 50... + 60°С 3) жароустойчивые прокариоты — термофильные бактерии и некоторые виды сине-зеленых водорослей, могут жить в горячих источниках при температуре +85... + 90°С. Основные пути температурных адаптации у животных следующие: 1) химическая терморегуляция — активное увеличение теплопродукции в ответ на понижение температуры среды; 2) физическая терморегуляция— изменение уровня теплоотдачи, способность удерживать тепло или, наоборот, рассеивать его избыток. Физическая терморегуляция осуществляется благодаря особым анатомическим и морфологическим чертам строения животных: волосяному и перьевому покровам, деталям устройств кровеносной системы, распределению жировых запасов, возможностям испарительной теплоотдачи и т. п.; 3) поведение организмов. Перемещаясь в пространстве или изменяя свое поведение более сложным образом, животные могут активно избегать крайних температур. Для многих животных поведение является почти единственным и очень эффективным способом поддержания теплового баланса.
|
||||
Последнее изменение этой страницы: 2016-12-12; просмотров: 212; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.148.105.152 (0.007 с.) |