Движение заряженной частицы в электрическом и магнитном полях. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Движение заряженной частицы в электрическом и магнитном полях.



Движение заряженных частиц

В однородном электрическом поле

Если частица, обладающая зарядом е, движется в пространстве, где имеется электрическое поле с напряжённостью E то на неё действует сила eE. Если, кроме электрического, имеется магнитное поле, то на частицу действует ещё сила Лоренца, равная e[uB], где u - скорость движения частицы относительно поля, B - магнитная индукция. Поэтому согласно второму закону Ньютона уравнение движения частиц имеет вид:

Написанное векторное уравнение распадается на три скалярных уравнения, каждое из которых описывает движение вдоль соответствующей координатной оси.

В дальнейшем мы будем интересоваться только некоторыми частными случаями движения. Предположим, что заряженные частицы, двигавшиеся первоначально вдоль оси Х со скоростью попадают в электрическое поле плоского конденсатора.

 

Если зазор между пластинами мал по сравнению с их длиной, то краевыми эффектами можно пренебречь и считать электрическое поле между пластинами однородным. Направляя ось Y параллельно полю, мы имеем:. Так как магнитного поля нет, то. В рассматриваемом случае на заряженные частицы действует только сила со стороны электрического поля, которая при выбранном направлении координатных осей целиком направлена по оси Y. Поэтому траектория движения частиц лежит в плоскости XY и уравнения движения принимают вид:

Движение заряженной частицы в магнитном поле

Выражение для силы Лоренца позволяет найти ряд закономерностей движения заряженных частиц в магнитном поле. Направление силы Лоренца и направление вызываемого ею отклонения заряженной частицы в магнитном поле зависят от знака заряда Q частицы. На этом основано определение знака заряда частиц, движущихся в магнитных полях.

Если заряженная частица движется в магнитном поле со скоростью v, перпендикулярной вектору В, то сила Лоренца F=Q[vB] постоянна по модулю и нормальна к траектории частицы. Согласно второму закону Ньютона, эта сила создает центростремительное ускорение. Отсюда следует, что частица будет двигаться по окружности, радиус r которой определяется из условия QvB=mv2/r откуда

Период вращения частицы, т. е. время Т, за которое она совершает один полный оборот,

Подставив сюда выражение, получим

т. е. период вращения частицы в однородном магнитном поле определяется только величиной, обратной удельному заряду (Q/m) частицы, и магнитной индукцией поля, но не зависит от ее скорости (при v<<c). На этом основано действие циклических ускорителей заряженных частиц.

 



Поделиться:


Последнее изменение этой страницы: 2016-12-12; просмотров: 329; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.21.104.109 (0.004 с.)