Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Картриджи с магнитными лентами.

Поиск

 

8-миллиметровые ленты видеоформата, заключенные внутрь кассеты называется картриджем. Емкость картриджа составляет от 2 до 5 Гбайт, а скорость считывания с него данных - несколько сотен килобайтов в секунду. Чтение и запись выполняются системой спиральной развертки, подобной той, что применяется в видеокассетах. Плотность записи данных составляет десятки миллионов битов на квадратный дюйм. Существуют системы, позволяющие автоматизировать загрузку и выгрузку картриджей таким образом, чтобы десятки гигабайт данных можно было скопировать с диска без вмешательства оператора.

СТРИМЕР и Искровая камера

 

Устройство для резервного копирования больших объемов информации. В качестве носителя здесь применяются кассеты с магнитной лентой емкостью до 900 Гб.

Встроенные в стример средства аппаратного сжатия позволяют автоматически уплотнять информацию перед ее записью и восстанавливать после считывания, что увеличивает объем сохраняемой информации

Преимущества: Невысокая стоимость стабильность работы, надежность. информационного носителя,

Недостатки: Низкая скорость доступа к данным из-за последовательного доступа, низкая скорость записи, поиска и считывания информации. Большие размеры

Основное назначение: Запись и воспроизведение информации, создание резервных копий данных.

Искровая камера - прибор для регистрации частиц, действие которого основано на развитии искрового разряда в газовом промежутке электрического конденсатора при пролете через него частицы. Искровой разряд возникает благодаря электронам, появляющимся при ионизации газа заряженной частицей. Разряд вдоль следа (трека) частицы видим невооруженном глазом и может быть сфотографирован. Достоинство искровой камеры это малая инерционность.

Магнитный барабан

Магнитный барабан - ранняя разновидность компьютерной памяти, широко использовавшаяся в 1950-1960-х годах. Изобретена Густавом Таушеком (en) в 1932 году в Австрии.

 

Барабан представляет собой большой металлический цилиндр, наружная поверхность которого покрыта ферромагнитным регистрирующим материалом. Упрощенно можно сказать, что это пластина жесткого диска, имеющая форму цилиндра, а не плоского диска. Ряд считывающих головок движется по окружности барабана, каждая по отдельной дорожке.

Ключевое отличие между барабаном и диском заключается в том, что на барабане головки не могут перемещаться произвольно для поиска необходимой дорожки. Это означает, что время чтения и записи любого одиночного фрагмента информации меньше, чем оно было бы на диске. Контроллер просто ждет когда данные появятся под нужной головкой при повороте барабана. Производительность магнитных барабанов полностью определяется скоростью их вращения, в то время как у диска важны как скорость вращения, так и скорость перемещения головок.

Пластиковая карта

Пластиковые карты применяются:

· для идентификации их владельца;

· как аналог платежных средств;

· как "пропуск в мир скидок" - т.е. дисконтные;

Для совмещения в себе каких-либо из перечисленных выше свойств.

Большинство видов пластиковых карт имеют формат определенный стандартом ISO 7810 ID-1: 85,6 мм? 53,98 мм.

Пластиковые карты - непременный атрибут современного бизнеса, прекрасный инструмент создания лояльности потребителей и повышения уровня дисциплины сотрудников. Выпуск пластиковых карт характеризует высокий уровень компании, делает ее имидж более привлекательным, и обычно представляется потребителям, как преимущество 'большой' компании перед более мелкими конкурентами.

Перфолента Перфолента (перфорированная лента) - устаревший носитель информации в виде бумажной ленты с отверстиями. Первые перфоленты использовались с середины XIX века в телеграфии, отверстия в них располагались в 5 рядов, для передачи данных использовался код Бодо.

Благодаря простоте устройств ввода/вывода, перфолента получила распространение в компьютерной технике. Поздние компьютерные перфоленты имели ширину 7 или 8 рядов и использовали для записи кодировку ASCII. Использовались в миникомпьютерах для ввода/вывода информации и для управления

Недостатком перфолент по сравнению с перфокартами является низкая механическая прочность ленты и невозможность "ручного редактирования" текстовых файлов (добавлением или заменой перфокарт в колоде). По сравнению с магнитными лентами основным недостатком была низкая скорость чтения/записи.

 

Скорость записи и считывания оставляет порядка 4 бод, что хорошо согласуется со скоростью печати символьных печатающих устройств того времени.

Способ записи механический, способ считывания - оптический. При записи бумажные кружочки от проколотых отверстий попадают в съемный контейнер.

Перфокарта

 

Перфокарта (сокр. от перфорированный и карта) - носитель информации, предназначенный для использования системами автоматической обработки данных. Сделанная из тонкого картона, перфокарта представляет информацию наличием или отсутствием отверстий вопределенных позициях карты.

Перфокарты впервые начали применяться в ткацких станках Жаккарда (1808) для управления узорами на тканях.

Существовало много разных форматов перфокарт; наиболее распространенным был "формат IBM", введенный в 1928 г. - 12 строк и 80 колонок. Первоначально углы были острые, а с 1964 г. - скругленные.

Компьютеры первого поколения, в 20-50-е годы XX-го столетия, использовали перфокарты в качестве основного носителя при хранении и обработке данных. Затем, в течение 70-х - начале 80-х, они использовались только для хранения данных и постепенно были замещены гибкими магнитными дисками большого размера. В настоящее время перфокарты не используются нигде, кроме устаревших систем.

Главным преимуществом перфокарт было удобство манипуляции данными - в любом месте колоды можно было добавить карты, удалить, заменить одни карты другими.

Двоичный и текстовый режим

 

При работе с перфокартами в двоичном режиме перфокарта рассматривается как двумерный битовый массив; допустимы любые комбинации пробивок. Например, в системах IBM 701 машинное слово состояло из 36 бит; при записи данных на перфокарты в одной строке пробивок записывалось 2 машинных слова (последние 8 колонок не использовались), всего на одну перфокарту можно было записать 24 машинных слова.

При работе с перфокартами в текстовом режиме каждая колонка обозначает один символ; таким образом, одна перфокарта представляет строку из 80 символов. Допускаются лишь некоторые комбинации пробивок. Наиболее просто кодируются цифры - одной пробивкой в позиции, обозначенной данной цифрой. Буквы и другие символы кодируются несколькими пробивками в одной колонке. Отсутствие пробивок в колонке означает пробел (в отличие от перфоленты, где отсутствие пробивок означает пустой символ, NUL). В системе IBM/360 были определены комбинации пробивок для всех 256 значений байта (например, пустой символ NUL обозначался комбинацией 12-0-1-8-9), так что фактически в текстовом режиме можно было записывать и любые двоичные данные.

Для удобства работы с текстовыми данными вдоль верхнего края перфокарты часто печатались те же символы в обычном человекочитаемом виде.

Флеш-память

Флеш-память (англ. Flash-Memory) - разновидность твердотельной полупроводниковой энергозависимой перезаписываемой памяти.

 

Может быть прочитана сколько угодно раз, но писать в такую память можно лишь ограниченное число раз (обычно около 10 тысяч раз). Более надежна и компактна, в отличии от жестких дисках.

Ёмкостью флеш-памяти достигает 1 Тб, широко используется в портативных устройствах, работающих на батарейках и аккумуляторах - цифровых фотокамерах и видеокамерах, цифровых диктофонах, MP3-плеерах, КПК, мобильных телефонах, а также смартфонах. Также используется для хранения встроенного программного обеспечения в различных периферийных устройствах (маршрутизаторах, мини-АТС, коммуникаторах, принтерах, сканерах).

История

Флеш-память была изобретена Фудзи Масуока (Fujio Masuoka), когда он работал в Toshiba в 1984 году. Имя "флеш" было придумано также в Toshiba коллегой Фудзи, Седзи Ариизуми (Shoji Ariizumi), потому что процесс стирания содержимого памяти ему напомнил фотовспышку (англ. flash). Масуока представил свою разработку на IEEE 1984 International Electron Devices Meeting (IEDM), проходившей в Сан-Франциско, Калифорния. Intel увидела большой потенциал в изобретении и в 1988 году выпустила первый коммерческий флеш-чип NOR -типа.

NAND -тип флеш-памяти был анонсирован Toshiba в 1989 году на International Solid-State Circuits Conference. У него была больше скорость записи и меньше площадь чипа.

Стандартизацией чипов флеш-памяти типа NAND занимается Open NAND Flash Interface Working Group (ONFI). Текущим стандартом считается спецификация ONFI версии 1.0, выпущенная в 28 декабря 2006 года. Группа ONFI поддерживается крупнейшими производителями NAND чипов: Intel, Micron Technology и Sony.

Принцип действия

 

Флеш-память хранит информацию в массиве транзисторов с плавающим затвором, называемых ячейками (англ. cell). Каждая из них может хранить только один бит. Некоторые новые устройства с многоуровневыми ячейками (англ. multi-level cell, MLC) могут хранить больше одного бита, используя разный уровень электрического заряда на плавающем затворе транзистора.

NOR

В основе этого типа флеш-памяти лежит ИЛИ-НЕ элемент (англ. NOR), потому что в транзисторе с плавающим затвором низкое напряжение на затворе обозначает единицу.

Транзистор имеет два затвора: управляющий и плавающий. Последний полностью изолирован и способен удерживать электроны до 10 лет. В ячейке имеются также сток и исток. При программировании напряжением на управляющем затворе создается электрическое поле и возникает туннельный эффект. Некоторые электроны туннелируют через слой изолятора и попадают на плавающий затвор, где и будут пребывать. Заряд на плавающем затворе изменяет "ширину" канала сток-исток и его проводимость, что используется при чтении.

Устройства потребляют большой ток при записи, а при чтении малую энергию.

Для стирания информации на управляющий затвор подается высокое отрицательное напряжение, и электроны с плавающего затвора переходят (туннелируют) на исток.

В NOR архитектуре к каждому транзистору необходимо подвести индивидуальный контакт, что увеличивает размеры схемы. Эта проблема решается с помощью NAND архитектуры.

NAND

В основе NAND типа лежит И-НЕ элемент (англ. NAND). Принцип работы такой же, от NOR типа отличается только размещением ячеек и их контактами, не требуется подводить индивидуальный контакт к каждой ячейке. Так же запись и стирание происходит быстрее. Однако эта архитектура не позволяет обращаться к произвольной ячейке.

NAND и NOR архитектуры сейчас существуют параллельно и не конкурируют друг с другом, поскольку находят применение в разных областях хранения данных.

Файловые системы

Основное слабое место - количество циклов перезаписи. Если ОС часто записывает данные в одно и то же место, ситуация ухудшается. Например, часто обновляется таблица файловой системы, так что первые сектора памяти израсходуют свой запас значительно раньше. Распределение нагрузки позволяет существенно продлить срок работы памяти.

Для решения этой проблемы были созданы специальные файловые системы: JFFS2 и YAFFS для GNU/Linux и exFAT для Microsoft Windows.

USB флеш-носители и карты памяти, такие как SecureDigital и CompactFlash имеют встроенный контроллер, который производит обнаружение и исправление ошибок и старается равномерно использовать ресурс перезаписи флеш-памяти. На таких устройствах не имеет смысла использовать специальную файловую систему и для лучшей совместимости применяется обычная FAT.

Применение

Скорость некоторых устройств с флеш-памятью может доходить до 100 Мб/с.

Для увеличения объема в устройствах часто применяется массив из нескольких чипов. В основном на середину 2007 года USBустройства и карты памяти имеют объем от 512 Мб до 64 Гб. Самый большой объем USB устройств составляет 1 Тб.

Типы карт памяти

MMC (MultiMedia Card): карточка в формате MMC имеет небольшой размер - 24х32х1,4 мм. Разработана совместно компаниями SanDisk и Siemens. MMC содержит контроллер памяти и обладает высокой совместимостью с устройствами самого различного типа. В большинстве случаев карты MMC поддерживаются устройствами со слотом SD.

RS-MMC (Reduced Size MultiMedia Card): карта памяти, которая вдвое короче стандартной карты MMC. Ее размеры составляют 24x18x1,4 мм, а вес - около 6 г, все остальные характеристики не отличаются от MMC. Для обеспечения совместимости со стандартом MMC при использовании карт RS-MMC нужен адаптер.

DV-RS-MMC (Dual Voltage Reduced Size MultiMedia Card): карты памяти DV-RS-MMC с двойным питанием (1,8 и 3,3 В) отличаются пониженным энергопотреблением, что позволит работать мобильному телефону немного дольше. Размеры карты совпадают с размерами RS-MMC, 24x18x1.4 мм.

MMCmicro: миниатюрная карта памяти для мобильных устройств с размерами 14x12x1,1 мм. Для обеспечения совместимости со стандартным слотом MMC необходимо использовать переходник.

SD Card (Secure Digital Card): поддерживается фирмами SanDisk, Panasonic и Toshiba. Стандарт SD является дальнейшим развитием стандарта MMC. По размерам и характеристикам карты SD очень похожи на MMC, только чуть толще (32х24х2.1 мм). Основное отличие от MMC - технология защиты авторских прав: карта имеет криптозащиту от несанкционированного копирования, повышенную защиту информации от случайного стирания или разрушения и механический переключатель защиты от записи. Несмотря на родство стандартов, карты SD нельзя использовать в устройствах со слотом MMC.

SD (Trans-Flash) и SDHC (High Capacity): Старые карты SD т. н. Trans-Flash и новые SDHC (High Capacity) и устройства их чтения различаются ограничением на максимальную емкость носителя, 2Гб для Trans-Flash и 32Гб для High Capacity (Высокой Емкости). Устройства чтения SDHC обратно совместимы с SDTF, то есть SDTF карта будет без проблем прочитана в устройстве чтения SDHC, но в устройстве SDTF увидится только 2Гб от емкости SDHC большей емкости, либо не будет читаться вовсе. Предполагается, что формат TransFlash будет полностью вытеснен форматом SDHC. Оба суб-формата могут быть представлены в любом из трех форматов физ. размеров (Стандартный, mini и micro).

miniSD (Mini Secure Digital Card): От стандартных карт Secure Digital отличаются меньшими размерами 21.5х20х1.4 мм. Для

microSD (Micro Secure Digital Card): являются на настоящий момент (2008) самыми компактными съемными устройствами флеш-памяти

(11х15х1 мм). Используются, в первую очередь, в мобильных телефонах, коммуникаторах, и т. п., так как, благодаря своей компактности, позволяют существенно расширить память устройства, не увеличивая при этом его размеры. Переключатель защиты от записи вынесен на адаптер microSD-SD.

MS Duo (Memory Stick Duo): данный стандарт памяти разрабатывался и поддерживается компанией Sony. Корпус достаточно прочный. На данный момент - это самая дорогая память из всех представленных. Memory Stick Duo был разработан на базе широко распространенного стандарта Memory Stick от той же Sony, отличается малыми размерами (20х31х1.6 мм.).

Контрольные вопросы.

1. На какие устройства делятся ЗУ по устойчивости записи?

2. Что относиться к основным техническим характеристикам ВЗУ?

3. Каких типов выпускаются магнитооптические носители?

4. На каком явлении основывается принцип записи FMD ROM?

5. Какой магнитооптический носитель позиционировался как замена компакт-касет для хранения цифровой информации?

6. Какие операции позволяет осуществлять устройство записи-считывания информации с магнитных лент?

7. Какая емкость у картриджа с магнитными лентами?

8. Какие преимущества и недостатки у ЗУ Стример?

9. Где применяются пластиковые карты?

10. 10.Какой носитель представляет большой металлический цилиндр, наружная поверхность которого покрыта ферромагнитным регистрирующим материалом?

11. В чем отличия перфолент от перфокарт?

12. Какие существуют типы карт памяти?

13. Какие существуют форматы оптических CD дисков? В чем их отличия?

14. Какие существуют форматы оптических DVD дисков? В чем их отличия?

15. Какие особенности характерны пакетной записи?

16. Какие файловые системы используют оптические носители?

17. Какие механизмы загрузки используют оптические носители?

18. Какие особенности характерны для стандарта DVD+R?

19. Какой тип лазера использует стандарт blu-ray?

20. Какие технические особенности использует стандарт blu-ray?


Тема: Контроллеры

Аннотация: В лекции рассказывается о контроллере, - устройстве, которое связывает периферийное оборудование или каналы связи с центральным процессором, освобождая процессор от непосредственного управления функционированием данного оборудования.

Ключевые слова: процессор, контроллер, команда перемещения, RLL, MFM, GND, NRZ, frequency modulation, теоретический предел скорости, interleave factor, ARLL, ESDI, attn, CLK, cartridge, оптический накопитель, IPI, TERMPWR, DDR, CDB, двусторонний обмен, inquiry, ATA, ground, GPIO, CHS, enhanced ide, EIDE, fast ata, quantum, ATAPI, PIO, VESA, LBA, block addressable, шина ISA, VLB, local bus, пакетный режим, EISA, режимы передачи, AKA, UDMA, acoustics, SATA, PATA, пропускная способность шины, LVD, hot-plug, esata, IEEE 1394, DAS, service delivery, отказоустойчивые системы, SFF, infiniband, serial ata

 

Контроллер (калька с англ. controller - регулятор, управляющее устройство) - устройство, которое связывает периферийное оборудование или каналы связи с центральным процессором, освобождая процессор от непосредственного управления функционированием данного оборудования. Контроллер выполняет интерпритацию команд процессора для отдельных устройств.

Интерфейсы винчестеров

Интерфейс (от англ. interface - поверхность раздела, перегородка) - совокупность средств и методов взаимодействия между элементами системы.

ST506/412

Широкое применение винчестеров в качестве устройств долговременного хранения информации началось после выпуска фирмой Shugart Technology (ныне эта компания именуется Seagate Technology, Inc.) диска ST506 размером 5.25 дюйма. Устройство емкостью 5Мбайт использовало для подключения к компьютеру интерфейсную плату ST506, разработанную в конце 70-х годов компанией Western Digital. Для соединения винчестера с интерфейсной платой использовался 34-проводный плоский кабель, к которому можно было подключить два устройства. Для того, чтобы диски можно было адресовать, часть кабеля перекручивалась (подобно кабелю для подключения дисководов). Кроме того, для обмена данными с каждым из дисков использовался отдельный 20-проводный плоский кабель. Крупным недостатком интерфейса ST506 являлось пошаговое перемещение головок (один шаг на каждую команду перемещения), как это до сих пор происходит в дисководах для работы с гибкими дисками. Более новая модель - ST412 - обеспечивала возможность буферизованного поиска (buffered seek), позволяющего одной командой перемещать головки на несколько шагов (например, через весь диск).

Основным преимуществом винчестеров с интерфейсом ST506/ST412 является их низкая стоимость. Почти вся электроника, ответственная за работу диска, располагалась на интерфейсной плате. Управляющие приводом головок сигналы передавались по общему для двух подключаемых к контроллеру устройств 34-проводному кабелю, а обмен данными с контроллером осуществлялся по 20-проводным плоским кабелям прямо в виде последовательности импульсов, считанных с диска или записываемых на него. Разъемы, используемые для подключения

RLL / MFM IDC-34
  GND   Head Sel 8 Выбор головки 8
  GND   Head Sel 4 Выбор головки 4
  GND   Write Gate Шлюз записи
  GND   Seek Complete Сканиров. заверш.
  GND   Track 0 Дорожка 0
  GND   Write Fault Отказ при записи
  GND   Head Sel 1 Выбор головки 1
  GND   (reserved) зарезервировано
  GND   Head Sel 2 Выбор головки 2
  GND   Index Индекс
  GND   Ready Готовность
  GND   Step Шаг
  GND   Drive Sel 1 Выбор диска 1
  GND   Drive Sel 2 Выбор диска 2
  GND   Drive Sel 3 Выбор диска 3
  GND   Drive Sel 4 Выбор диска 4
  GND   Direction In Направление

 

RLL / MFM IDC-20
  Диск выбран   GND
  GND   GND
  (зарезервирован)   Запись данных +
  GND   Запись данных -
  (зарезервирован)   GND
  GND   GND
  (зарезервирован)   Чтение данных +
  GND   NRZ Чтение данных -
  (зарезервирован)   GND
  (зарезервирован)   GND

Небольшой набор команд интерфейса ST506/412 затруднял создание дисков с большой емкостью. Почти все диски с таким интерфейсом имели скорость вращения 3600 оборотов в минуту.

Интерфейс ST506 поддерживает два способа модуляции при записи-воспроизведении данных: MFM (Modified Frequency Modulation - модифицированная частотная модуляция) и RLL (Run Length Limited - кодирование с ограничением длины поля записи).

Модуляция MFM

Метод MFM является разновидностью обычной частотной модуляции, широко используемой в радиовещании и связи. Отличие заключается в том, что модифицированная модуляция позволяет обеспечить двухкратное повышение плотности записи данных за счет того, что на диск записываются не все сигналы синхронизации и при записи каждого бита учитывается значение предшествующего бита. За один переход (смену направления) намагниченности можно записать от одного до трех бит данных). Сигналы с головки передаются по кабелю данных в аналоговой форме; данные отделяются от сигналов синхронизации с помощью специального устройства - сепаратора, устанавливаемого на плате контроллера.

Основным преимуществом MFM -модуляции является простая бинарная форма записываемого на диск сигнала. При записи на дорожку использовались 17 секторов по 512 байт каждый. Теоретический предел скорости обмена с дисками, использующими MFM, составляет около 4Мбит/сек (17секторов*512байт/сектор*8бит*3600об/мин):60сек = 4177920 бит/сек.

Однако реальная скорость обмена в несколько раз меньше, поскольку для таких дисков фактор чередования (Interleave factor) не равен 1. Это было связано с тем, что контроллер не успевал обработать прочитанные данные до того, как головка перемещалась к следующему сектору. При факторе чередования 1:1 порядок следования секторов на дорожке естественный: 1, 2, 3,...16, 17. При факторе чередования 3:1 секторы на диске имеют следующий порядок: 1, 7, 13, 2,..., 11, 17. Первое число в обозначении коэффициента чередования указывает количество оборотов диска, требуемых для полного прочтения или записи одной дорожки. За счет кэширования записи можно было установить для дисков ST506 фактор чередования 1:1.

Модуляция RLL

Другой способ модуляции (2,7 RLL или просто RLL), предложенный компанией IBM в 1986 году, использует перекодирование исходной информации с введением избыточности. Метод RLL преобразует данные в шестнадцатибитовые слова, позволяющие записывать за один переход состояния намагниченности диска от 2 до 7 бит (эти цифры и включены в название метода). Использование RLL -модуляции предъявляет более высокие требования к качеству поверхности диска и равномерности его вращения. Кроме того, усилители каналов считывания-записи должны иметь несколько иные характеристики, по сравнению с MFM -модуляцией. Винчестеры с интерфейсом S T506/412, использующие метод RLL, как правило, имеют в своем обозначении суффикс R (например, ST157R). На одну дорожку диска можно записать 26 секторов по 512 байт, что дает теоретическую возможность обмена со скоростью (512*26*8*3600):60=6489760бит/сек.

Метод RLL был развит впоследствии до возможности записи от 3 до 9 бит за один переход намагниченности (3,9 RLL, ARLL, ERLL), что позволило записывать на дорожку 31 сектор и обеспечило теоретический предел скорости обмена с диском 7618560бит/сек.

Диски RLL можно без опаски подключать к контроллерам MFM (правда с потерей емкости), обратная же операция в общем случае некорректна. Многие, наверное, помнят такой метод "увеличения" размера диска, практиковавшийся несколько лет назад, - однако он не позволяет обеспечить достаточную надежность хранения данных.

Сегодня диски с интерфейсом ST506/412 можно встретить только в очень старых компьютерах.

ESDI

По мере роста скорости работы компьютеров интерфейс ST506 перестал удовлетворять всем требованиям и в 1985 году был разработан новый стандарт - ESDI, который, по сути, являлся простым расширением возможностей своего предшественника. Кабели, используемые в спецификации ESDI, внешне не отличаются от кабелей ST506, однако сигналы по ним передаются другие.

ESDI IDC-34
  GND   Head Sel 3 Выбор головки 3
  GND   Head Sel 2 Выбор головки 2
  GND   Write Gate Шлюз записи
  GND   Config/Stat Data Данные конф/сост.
  GND   Transfer Ack Запрос обмена
  GND   Attn Внимание
  GND   Head Sel 0 Выбор головки 0
  GND   Sect/Add MK Found  
  GND   Head Sel 1 Выбор головки 1
  GND   Index Индекс
  GND   Ready Готовность
  GND   Trans Req  
  GND   Drive Sel 1 Выбор диска 1
  GND   Drive Sel 2 Выбор диска 2
  GND   Drive Sel 3 Выбор диска 3
  GND   Read Gate Шлюз чтения
  GND   Command Data  
  Drive Selected   Sect/Add MK Found
  Seek Complete   Addr Mark Enable
  (reserved)   GND
  Write Clk +   Write Clk -
  Cartridge Chng   Read Ref Clk +
  Read Ref Clk -   GND
  NRZ Write Data+   NRZ Write Data-
  GND   GND
  NRZ Read Data+   NRZ Read Data-
  GND   GND

Длина используемых в интерфейсе ESDI кабелей могла достигать 9 футов (3 метра), сигналы передавались главным образом как синфазные (с общей землей), за исключением данных и синхронизации, для передачи которых использовался дифференциальный метод. Данные передавались через последовательную линию порциями по 16 бит, сопровождаемых битом четности. Обеспечивалась также возможность подтверждения передачи данных.

Сепаратор в соответствии с новой спецификацией устанавливался непосредственно на плате винчестера и по кабелю данных передавались уже не аналоговые сигналы, а реальные данные в цифровой форме, что позволяло подобрать параметры сепаратора к конкретному типу устройства, поскольку искажения сигналов в кабеле уже не имели значения. Такой метод повышал надежность передачи данных и увеличивал скорость обмена с контроллером до 10Мбит/сек за счет передачи по кабелю цифровых сигналов. Кроме того, интерфейс ESDI обеспечивал возможность использования винчестеров большой емкости и оптических накопителей.

Интерфейс ESDI обеспечивал три сигнала выбора устройства, что позволяло подключать к нему до 7 накопителей. Сигналы выбора головки позволяли напрямую адресовать до 16 головок, однако специальная команда Select Head Group позволяла использовать до 256 головок (16 групп по 16 головок в каждой).

SCSI

Первоначальный вариант интерфейса SCSI (Small Computer System Interface) был предложен в конце 70-х годов Shugart Associates под названием SASI (Shugart Associates System Interface) взамен разработанной компанией IBM системной шины IPI (интеллектуальный периферийный интерфейс). После неудачи в конкурентной борьбе с фирмой IBM этот интерфейс был предложен комитету ANSI X3T9.2 как интерфейс нижнего уровня под названием SCSI. В 1984 году этот комитет закончил разработку спецификации SCSI-1 и в 1986 году она была опубликована в окончательном виде. Этот интерфейс обеспечивал подключение широкого класса периферийных устройств, таких как винчестеры, принтеры, сканеры, стриммеры, приводы CD-ROM и др. SCSI является интерфейсом системного, а не приборного уровня. В отличие от ST506/412 и других приборных интерфейсов с последовательной передачей информации, SCSI передает биты данных параллельно, что обеспечивает существенное повышение скорости обмена данными между устройством и хост-адаптером.

Интерфейс SCSI используется не только в IBM -совместимых компьютерах, но и семействах Macintosh, SPARC, VAX и др. Одна из причин такого широкого распространения интерфейса SCSI заключается в том, что он не накладывает никаких ограничений на связь между контроллером и периферийным устройством. Шину SCSI можно использовать для связи компьютера с несколькими периферийными устройствами (как внешними, так и внутренними). Более того, допускается совместное использование одного периферийного устройства несколькими компьютерами, подключенными к общей шине SCSI (правда это значительно сложнее сделать, чем написать, но об этом разговор особый). Подключаемые к шине SCSI устройства могут играть роль ведущих (Initiator) или ведомых (Target), при этом одно и то же устройство может быть ведомым в одних случаях и ведущим - в других. Такое разделение функций устройств позволяет организовать передачу данных с одного периферийного устройства на другое (например, резервное копирование данных с винчестера на стриммерную кассету). Обмен между устройствами по магистрали SCSI происходит в соответствии с протоколом высокого уровня и адресация осуществляется на уровне логических, а не физических (как в ESDI) блоков. Программы для работы со SCSI -устройствами не используют физические характеристики конкретного устройства (число головок, цилиндров и т.п.), а имеют дело с логическими блоками, что дает возможность работы фактически со всеми блочными устройствами.

Для подключения устройств SCSI используется кабель (как правило плоский) с 50-контактными разъемами (Приложение 3). Возможны как синфазная, так и дифференциальная (с помощью "токовой петли") передача данных по кабелю; при синфазной передаче длина кабеля может достигать 6 м, при дифференциальной - 25 м. Для гарантированной передачи сигналов по магистрали SCSI линию требуется согласовывать с помощью терминаторов (набора резисторов), устанавливаемых по обоим концам шины SCSI.

Single Ended IDC-50 Male
  GND   GND   GND   GND   GND
  DB0   DB5   GND   ATN   - MSG
  GND   GND   GND   GND   GND
  DB1   DB6   GND   GND   SEL
  GND   GND   Открыт   GND   GND
  DB2   DB7   TERMPWR   BSY   - C/D
  GND   GND   GND   GND   GND
  DB3   DBP   GND   BSY   - REQ
  GND   GND   GND   GND   GND
  DB4   GND   GND   RST   - I/O

 

Differential IDC-50 Male
  Открыт   +DB4   DIFFSENS   GND   +SEL
  GND   -DB4   GND   GND   -SEL
  +DB0   +DB5   GND   +BSY   +C/D
  -DB0   -DB5   GND   -BSY   -C/D
  +DB1   +DB6   TERMPWR   +ACK   +REQ
  -DB1   -DB6   TERMPWR   -ACK   -REQ
  +DB2   +DB7   GND   +RST   +I/O
  -DB2   -DB7   GND   -RST   -I/O
  +DB3   +DBP   +ATN   +MSG   GND
  -DB3   -DBP   -ATN   -MSG   GND

 

Macintosh SCSI (Single Ended)DB-25S Female
  -REQ   -DB5   DB1
  -MSG   -DB6   DB2
  -I/O   -DB07   DB4
  -RST   GND   GND
  -ACK   -C/D   NC(TERMPW)
  -BSY   GND    
  GND   -ATN    
  -DB0   GND    
  GND   -SEL    
  -DB3   DBP    

Спецификация SCSI предусматривает подключение к шине до восьми устройств, однако с учетом того, что каждое устройство может содержать 8 логических блоков, а каждый блок - 256 подблоков, возможности расширения являются фактически неограниченными. Каждое подключаемое к шине SCSI устройство имеет свой идентификатор, устанавливаемый с помощью перемычек или переключателей непосредственно в устройстве. Идентификаторы позволяют адресовать устройства и задают их приоритет (чем больше значение идентификатора, тем выше приоритет устройства).

На протяжении последних лет интерфейс SCSI был существенно расширен - появились спецификации Fast-SCSI и Wide-SCSI, обеспечивающие более высокую скорость обмена данными с устройствами SCSI. В настоящее время интерфейс SCSIиспользуется в основном в высокопроизводительных системах, предназначенных для коллективного использования (диски файловых серверов, сканеры и т.д.)

Наименование Разрядность шины Частота шины Пропускная способность Максимальная длина кабеля Максимальное количество устройств
SCSI 8 бит 5 МГц <


Поделиться:


Последнее изменение этой страницы: 2016-12-11; просмотров: 531; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.15.223.129 (0.012 с.)