Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Какими свойствами обладают алгоpитмы?

Поиск

АЛГОРИТМЫ

Что такое алгоритм?

Человек ежедневно встречается с необходимостью следовать тем или иным правилам, выполнять различные инструкции и указания. Например, переходя через дорогу на перекрестке без светофора надо сначала посмотреть направо. Если машин нет, то перейти полдороги, а если машины есть, ждать, пока они пройдут, затем перейти полдороги. После этого посмотреть налево и, если машин нет, то перейти дорогу до конца, а если машины есть, ждать, пока они пройдут, а затем перейти дорогу до конца.

В математике для решения типовых задач мы используем определенные правила, описывающие последовательности действий. Например, правила сложения дробных чисел, решения квадратных уравнений и т. д. Обычно любые инструкции и правила представляют собой последовательность действий, которые необходимо выполнить в определенном порядке. Для решения задачи надо знать, что дано, что следует получить и какие действия и в каком порядке следует для этого выполнить. Предписание, определяющее порядок выполнения действий над данными с целью получения искомых результатов, и есть алгоритм.

Алгоpитм — заранее заданное понятное и точное пpедписание возможному исполнителю совеpшить определенную последовательность действий для получения решения задачи за конечное число шагов.

Это — не определение в математическом смысле слова, а, скорее, описание интуитивного понятия алгоритма, раскрывающее его сущность.

Название "алгоритм" произошло от латинской формы имени величайшего среднеазиатского математика Мухаммеда ибн Муса ал-Хорезми (Alhorithmi), жившего в 783—850 гг. В своей книге "Об индийском счете" он изложил правила записи натуральных чисел с помощью арабских цифр и правила действий над ними "столбиком", знакомые теперь каждому школьнику. В XII веке эта книга была переведена на латынь и получила широкое распространение в Европе.

Понятие алгоритма является не только одним из главных понятий математики, но одним из главных понятий современной науки. Более того, с наступлением эры информатики алгоритмы становятся одним из важнейших факторов цивилизации [56].

2. Что такое "Исполнитель алгоритма"?

Исполнитель алгоритма — это некоторая абстрактная или реальная (техническая, биологическая или биотехническая) система, способная выполнить действия, предписываемые алгоритмом.

Исполнителя хаpактеpизуют:

сpеда;
элементаpные действия;
cистема команд;
отказы.

Сpеда (или обстановка) — это "место обитания" исполнителя. Напpимеp, для исполнителя Pобота из школьного учебника [1] сpеда — это бесконечное клеточное поле. Стены и закpашенные клетки тоже часть сpеды. А их pасположение и положение самого Pобота задают конкpетное состояние среды.

Система команд. Каждый исполнитель может выполнять команды только из некотоpого стpого заданного списка — системы команд исполнителя. Для каждой команды должны быть заданы условия пpименимости (в каких состояниях сpеды может быть выполнена команда) и описаны pезультаты выполнения команды. Напpимеp, команда Pобота "ввеpх" может быть выполнена, если выше Pобота нет стены. Ее pезультат — смещение Pобота на одну клетку ввеpх.

После вызова команды исполнитель совеpшает соответствующее элементаpное действие.

Отказы исполнителя возникают, если команда вызывается пpи недопустимом для нее состоянии сpеды.

Обычно исполнитель ничего не знает о цели алгоpитма. Он выполняет все полученные команды, не задавая вопросов "почему" и "зачем".

В информатике универсальным исполнителем алгоритмов является компьютер.

Что такое псевдокод?

Псевдокод представляет собой систему обозначений и правил, предназначенную для единообразной записи алгоритмов.

Псевдокод занимает промежуточное место между естественным и формальным языками. С одной стороны, он близок к обычному естественному языку, поэтому алгоритмы могут на нем записываться и читаться как обычный текст. С другой строны, в псевдокоде используются некоторые формальные конструкции и математическая символика, что приближает запись алгоритма к общепринятой математической записи.

В псевдокоде не приняты строгие синтаксические правила для записи команд, присущие формальным языкам, что облегчает запись алгоритма на стадии его проектирования и дает возможность использовать более широкий набор команд, рассчитанный на абстрактного исполнителя.

Однако в псевдокоде обычно имеются некоторые конструкции, присущие формальным языкам, что облегчает переход от записи на псевдокоде к записи алгоритма на формальном языке. В частности, в псевдокоде, так же, как и в формальных языках, есть служебные слова, смысл которых определен раз и навсегда. Они выделяются в печатном тексте жирным шрифтом, а в рукописном тексте подчеркиваются.

Единого или формального определения псевдокода не существует, поэтому возможны различные псевдокоды, отличающиеся набором служебных слов и основных (базовых) конструкций.

Примером псевдокода является школьный алгоритмический язык в русской нотации (школьный АЯ), описанный в учебнике А.Г. Кушниренко и др. "Основы информатики и вычислительной техники", 1991. Этот язык в дальнейшем мы будем называть просто "алгоритмический язык".

Основные служебные слова

алг (алгоритм) сим (символьный) дано для да
арг (аргумент) лит (литерный) надо от нет
рез (результат) лог (логический) если до при
нач (начало) таб(таблица) то знач выбор
кон (конец) нц (начало цикла) иначе и ввод
цел (целый) кц (конец цикла) все или вывод
вещ (вещественный) длин (длина) пока не утв

 

Общий вид алгоритма: алг название алгоритма (аргументы и результаты) дано условия применимости алгоритма надо цель выполнения алгоритма нач описание промежуточных величин | последовательность команд (тело алгоритма) кон

Часть алгоритма от слова алг до слова нач называется заголовком, а часть, заключенная между словами нач и контелом алгоритма.

В предложении алг после названия алгоритма в круглых скобках указываются характеристики (арг, рез) и тип значения (цел, вещ, сим, лит или лог) всех входных (аргументы) и выходных (результаты) переменных. При описании массивов (таблиц) используется служебное слово таб, дополненное граничными парами по каждому индексу элементов массива.

Примеры предложений алг:

алг Объем и площадь цилиндра (арг вещ R, H, рез вещ V, S)
алг Корни КвУр (арг вещ а, b, c, рез вещ x1, x2, рез лит t)
алг Исключить элемент (арг цел N, арг рез вещ таб А[1:N])
алг Диагональ (арг цел N, арг цел таб A[1:N, 1:N], рез лит Otvet)

Предложения дано и надо не обязательны. В них рекомендуется записывать утверждения, описывающие состояние среды исполнителя алгоритма, например:

1. алг Замена (арг лит Str1, Str2, арг рез лит Text)

2. дано | длины подстрок Str1 и Str2 совпадают

3. надо | всюду в строке Text подстрока Str1 заменена на Str2

5. алг Число максимумов (арг цел N, арг вещ таб A[1:N], рез цел K)

6. дано | N>0

7. надо | К — число максимальных элементов в таблице А

9. алг Сопротивление (арг вещ R1, R2, арг цел N, рез вещ R)

10. дано | N>5, R1>0, R2>0

11. надо | R — сопротивление схемы

Здесь в предложениях дано и надо после знака "|" записаны комментарии. Комментарии можно помещать в конце любой строки. Они не обрабатываются транслятором, но существенно облегчают понимание алгоритма.

Команды школьного АЯ

Команда присваивания. Служит для вычисления выражений и присваивания их значений переменным. Общий вид: А:= В, где знак ":=" означает команду заменить прежнее значение переменной, стоящей в левой части, на вычисленное значение выражения, стоящего в правой части.
Например, a:= (b+c) * sin(Pi/4); i:= i+1.

Команды ввода и вывода.

ввод имена переменных
вывод имена переменных, выражения, тексты.

Команды если и выбор. Применяют для организации ветвлений.

Команды для и пока. Применяют для организации циклов.

Пример записи алгоритма на школьном АЯ

алг Сумма квадратов (арг цел n, рез цел S)

дано | n > 0

надо | S = 1*1 + 2*2 + 3*3 +... + n*n

нач цел i

ввод n; S:=0

нц для i от 1 до n

S:=S+i*i

кц

вывод "S = ", S

Кон

Что такое вложенные циклы?

Возможны случаи, когда внутри тела цикла необходимо повторять некоторую последовательность операторов, т. е. организовать внутренний цикл. Такая структура получила название цикла в цикле или вложенных циклов. Глубина вложения циклов (то есть количество вложенных друг в друга циклов) может быть различной.

При использовании такой структуры для экономии машинного времени необходимо выносить из внутреннего цикла во внешний все операторы, которые не зависят от параметра внутреннего цикла.

Пример вложенных циклов для

Вычислить сумму элементов заданной матрицы А(5,3).

 

Матрица А S:= 0; нц для i от 1 до 5 нц для j от 1до 3 S:=S+A[i,j] кц кц

Пример вложенных циклов пока

Вычислить произведение тех элементов заданной матрицы A(10,10), которые расположены на пересечении четных строк и четных столбцов.

 

i:=2; P:=1 нц пока i <= 10 j:=2 нц пока j <= 10 P:=P*A[i,j] j:=j+2 кц i:=i+2 кц

Что такое язык ассемблера?

Язык ассемблера — это машинно-зависимый язык низкого уровня, в котором короткие мнемонические имена соответствуют отдельным машинным командам. Используется для представления в удобочитаемой форме программ, записанных в машинном коде.

Язык ассемблера позволяет программисту пользоваться текстовыми мнемоническими (то есть легко запоминаемыми человеком) кодами, по своему усмотрению присваивать символические имена регистрам компьютера и памяти, а также задавать удобные для себя способы адресации. Кроме того, он позволяет использовать различные системы счисления (например, десятичную или шестнадцатеричную) для представления числовых констант, использовать в программе комментарии и др.

Программы, написанные на языке ассемблера, требуют значительно меньшего объема памяти и времени выполнения. Знание программистом языка ассемблера и машинного кода дает ему понимание архитектуры машины. Несмотря на то, что большинство специалистов в области программного обеспечения разрабатывают программы на языках высокого уровня, таких, как Object Pascal или C, наиболее мощное и эффективное программное обеспечение полностью или частично написано на языке ассемблера.

Языки высокого уровня были разработаны для того, чтобы освободить программиста от учета технических особенностей конкретных компьютеров, их архитектуры. В противоположность этому, язык ассемблера разработан с целью учесть конкретную специфику процессора. Сдедовательно, для того, чтобы написать программу на языке ассемблера для конкретного компьютера, важно знать его архитектуру [57].

В качестве примера приведем программу на языке ассемблера для IBM PC. Программа вычисляет значение a = b + c для целых a, b и c:

.MODEL SMALL.DATA b DW 5 c DW 3 a DW?.CODE begin MOV AX,@DATA MOV DS,AX MOV AX,B ADD AX,C MOV A,AX MOV AH,4CH INT 21H END begin Директива.MODEL задает механизм распределения памяти под данные и команды. Директива.DATA определяет начало участка программы с данными. Директивы DW задают типы переменных и их значения. Директива.CODE определяет начало участка программы с командами. Команды MOV AX,@DATA и MOV DS,AX записывают адрес сегмента данных в регистр DS (Data Segment). Для вычисления a используются команды MOV AX, B, ADD AX,C и MOV A,AX. В директиве END задана метка первой выполняемой программы программы begin.  
   

 

Перевод программы с языка ассемблера на машинный язык осуществляется специальной программой, которая называется ассемблером и является, по сути, простейшим транслятором.

Таблица стандартных функций школьного алгоритмического языка

Название и математическое обозначение функции Указатель функции  
Абсолютная величина (модуль) | х | abs(x)  
Корень квадратный sqrt(x)  
Натуральный логарифм ln x ln(x)  
Десятичный логарифм lg x lg(x)  
Экспонента (степень числа е ~ 2.72) ex exp(x)  
Знак числа x (- 1, если х<0; 0, если x = 0; 1, если x > 0) sign x sign(x)  
Целая часть х (т.е. максимальное целое число,не превосходящее х)   int(x)  
Минимум из чисел х и y   min(x,y)  
Максимум из чисел х и y   max(x,y)  
Частное от деления целого х на целое y   div(x,y)  
Остаток от деления целого х на целое y   mod(x,y)  
Случайное число в диапазоне от 0 до х - 1   rnd(x)  
Синус (угол в радианах) sin x sin(x)  
Косинус (угол в радианах) cos x cos(x)  
Тангенс (угол в радианах) tg x tg(x)  
Котангенс (угол в радианах) ctg x ctg(x)  
Арксинус (главное значение в радианах) arcsin x arcsin(x)  
Арккосинус (главное значение в радианах) arccos x arccos(x)  
Арктангенс (главное значение в радианах) arctg x arctg(x)  
Арккотангенс (главное значение в радианах) arcctg x arcctg(x)  
 

В качестве аргументов функций можно использовать константы, переменные и выражения. Например:

 

sin (3.05) min (a, 5) sin (x) min (a, b) sin (2 * y + t / 2) min (a + b, a * b) sin((exp(x) + 1) ** 2) min(min(a, b), min(c, d))

 

Каждый язык программирования имеет свой набор стандартных функций.

Примеры записи арифметических выражений

Математическая запись Запись на школьном алгоритмическом языке
x * y / z
x / (y * z) или x / y / z
(a**3 + b**3) / (b*c)
(a[i+1] + b[i-1]) / (2*x*y)
(-b + sqrt(b*b - 4*a*c)) / (2*a)
(x<0) sign(x) * abs(x) ** (1/5)
0.49 * exp(a*a - b*b) + ln(cos(a*a)) ** 3
x/(1 + x*x/(3 + (2*x)**3))

Типичные ошибки в записи выражений:

 

5x + 1 a + sin x ((a + b)/c**3 Пропущен знак умножения между 5 и х Аргумент x функции sin x не заключен в скобки Не хватает закрывающей скобки

Примеры записи логических выражений, истинных при выполнении указанных условий.

Условие Запись на школьном алгоритмическом языке
Дробная часть вещественого числа a равна нулю int(a) = 0
Целое число a — четное mod(a, 2) = 0
Целое число a — нечетное mod(a, 2) = 1
Целое число k кратно семи mod(a, 7) = 0
Каждое из чисел a, b положительно (a>0) и (b>0)
Только одно из чисел a, b положительно ((a>0) и (b<=0)) или ((a<=0) и (b>0))
Хотя бы одно из чисел a, b, c является отрицательным (a<0) или (b<0) или (c<0)
Число x удовлетворяет условию a < x < b (x>a) и (x<b)
Число x имеет значение в промежутке [1, 3] (x>=1) и (x<=3)
Целые числа a и b имеют одинаковую четность ((mod(a, 2)=0) и (mod(b, 2)=0) или ((mod(a, 2)=1) и (mod(b, 2)=1))
Точка с координатами (x, y) лежит в круге радиуса r с центром в точке (a, b) (x-a)**2 + (y-b)**2 < r*r
Уравнение ax^2 + bx + c = 0 не имеет действительных корней b*b - 4*a*c < 0
Точка (x, y) принадлежит первой или третьей четверти ((x>0) и (y>0)) или ((x<0) и (y>0))
Точка (x, y) принадлежит внешности единичного круга с центром в начале координат или его второй четверти (x*x + y*y > 1) или ((x*x + y*y <= 1) и (x<0) и (y>0))
Целые числа a и b являются взаимнопротивоположными a = -b
Целые числа a и b являются взаимнообратными a*b = 1
Число a больше среднего арифметического чисел b, c, d a > (b+c+d) / 3
Число a не меньше среднего геометрического чисел b, c, d a >= (b+c+d) ** (1/3)
Хотя бы одна из логических переменных F1 и F2 имеет значение да F1 или F2
Обе логические переменые F1 и F2 имеют значение да F1 и F2
Обе логические переменые F1 и F2 имеют значение нет не F1 и не F2
Логическая переменная F1 имеет значение да, а логическая переменная F2 имеет значение нет F1 и не F2
Только одна из логических переменных F1 и F2 имеет значение да (F1 и не F2) или (F2 и не F1)

Упражнения

7.1. Запишите по правилам алгоритмического языка выражения:

 

a) e)
б) ж)
в) з)
г) и)
д) к)


7.2. Запишите в обычной математической форме арифметические выражения:

 

а) a / b ** 2; б) a+b/c+1; в) 1/a*b/c; г) a**b**c/2; д) (a**b)**c/2; е) a/b/c/d*p*q; ж) x**y**z/a/b; з) 4/3*3.14*r**3; и) b/sqrt(a*a+b); к) d*c/2/R+a**3; л) 5*arctg(x)-arctg(y)/4; м) lg(u*(1/3)+sqrt(v)+z); н) ln(y*(-sqrt(abs(x)))); о) abs(x**(y/x)-(y/x)**(1/3)); п) sqrt((x1-x2)**2+(y1-y2)**2); р) exp(abs(x-y))*(tg(z)**2+1)**x; c) lg(sqrt(exp(x-y))+x**abs(y)+z); т) sqrt(exp(a*x)*sin(x)**n)/cos(x)**2; у) sqrt(sin(arctg(u))**2+abs(cos(v))); ф) abs(cos(x)+cos(y))**(1+sin(y)**2);


7.3. Вычислите значения арифметических выражений при x=1:
а) abs(x-3)/ln(exp(3))*2/lg(10000);
Решение: abs(1-3)=2; ln(exp(3))=3; lg(10000)=4; 2/3*2/4=0.33;

б) sign(sqrt(sqrt(x+15)))*2**2**2;
в) int(-2.1)*int(-2.9)/int(2.9)+x;
г) -sqrt(x+3)**2**(sign(x+0.5)*3)+tg(0);
д) lg(x)+cos(x**2-1)*sqrt(x+8)-div(2,5);
е) sign(x-2)*sqrt(int(4.3))/abs(min(2,-1));
ж) div(10,x+2)*mod(10,x+6)/max(10,x)*mod(2,5).
7.4. Запишите арифметические выражения, значениями которых являются:
а) площадь треугольника со сторонами a, b, c (a, b, c >0) и полупериметром p;
Ответ: sqrt(p*(p-a)*(p-b)*(p-c));

б) среднее арифметическое и среднее геометрическое чисел a, b, c, d;
в) расстояние от точки с координатами (x,y) до точки (0,0);
г) синус от x градусов;
д) площадь поверхности куба (длина ребра равна а);
е) радиус описанной сферы куба (длина ребра равна а);
ж) координаты точки пересечения двух прямых, заданных уравнениями
a1x+b1y+c1=0 и a2x+b2y+c2=0 (прямые не параллельны).

 

7.5. Вычислите значения логических выражений:
а) x*x+y*y<=9 при x=1, y=-2
Ответ: да;

б) b*b-4*a*c<0 при a=2, b=1, c=-2;
в) (a>=1) и (a<=2) при a=1.5;
г) (a<1) или (a>1.2) при a=1.5;
д) (mod(a,7)=1) и (div(a,7)=1) при a=8;
е) не ((a>b) и (a<9) или (а*а=4)) при a=5, b=4.

 

7.6. Запишите логические выражения, истинные только при выполнении указанных условий:
а) x принадлежит отрезку [ a, b ]
Ответ: (x>=a) и (x<=b);

б) x лежит вне отрезка [ a, b ];
в) x принадлежит отрезку [ a, b ] или отрезку [ c, d ];
г) x лежит вне отрезков [ a, b ] и [ c, d ];
д) целое k является нечетным числом;
е) целое k является трехзначным числом, кратным пяти;
ж) элемент ai,j двумерного массива находится на пересечении нечетной строки и четного столбца;
з) прямые a1x+b1y+c1=0 и a2x+b2y+c2=0 параллельны;
и) из чисел a, b, c меньшим является с, а большим b;
к) среди чисел a, b, c, d есть взаимно противоположные;
л) среди целых чисел a, b, c есть хотя бы два четных;
м) из отрезков с длинами a, b, c можно построить треугольник;
н) треугольники со сторонами a1, b1, c1 и a2, b2, c2 подобны;
о) точка с координатами (x,y) принадлежит внутренней области треугольника с вершинами A (0,5), B (5,0) и C (1,0);
п) точка с координатами (x,y) принадлежит области, внешней по отношению к треугольнику с вершинами A (0,5), B (1,0) и C (5,0);
р) четырехугольник со сторонами a, b, c и d является ромбом.

 

7.7. Начертите на плоскости (x,y) область, в которой и только в которой истинно указанное выражение. Границу, не принадлежащую этой области, изобразите пунктиром.

 

а) (x<=0) и (y>=0) Ответ: е) ((x-2)**2+y*y<=4) и (y>x/2) Ответ:
б) (x>=0) или (y<=0) в) x+y>=0 г) (x+y>0) и (y<0) д) abs(x)+abs(y)>=1 ж) (x*x+y*y<1) и (y>x*x); з) (y>=x) и (y+x>=0) и (y<=1); и) (abs(x)<=1) и (y<2); к) (x**2+y**2<4) и (x**2+y**2>1);

7.8. Запишите логическое выражение, которое принимает значение "истина" тогда и только тогда, когда точка с координатами (x, y) принадлежит заштрихованной области.

 

7.9. Пусть a =3, b =5, c =7. Какие значения будут иметь эти переменные в результате выполнения последовательности операторов:
а) a:=a+1; b:=a+b; c:=a+b; a:=sqrt(a)
Решение: a =3+1=4, b =4+5=9, c =4+9=13, a = {корень квадратный из} 4 =2.
Ответ: а =2, b =9, c =13;
б) с:=a*b+2; b:=b+1; a:=c-b**2; b:=b*a;
в) b:=b+a; c:=c+b; b:=1/b*c;
г) p:=c; c:=b; b:=a; a:=p; c:=a*b*c*p;
д) c:=a**(b-3); b:=b-3; a:=(c+1)/2*b; c:=(a+b)*a;
е) x:=a; a:=b; b:=c; c:=x; a:=sqrt(a+b+c+x-2);
ж) b:=(a+c)**2; a:=lg(b**2)**2; c:=c*a*b.

 

7.10. Задайте с помощью операторов присваивания следующие действия:
а ) массив X=(x1, x2) преобразовать по правилу: в качестве x1 взять сумму, а в качестве х2 — произведение исходных компонент;
Решение: c:=x[1]; x[1]:=x[1]+x[2]; x[2]:=c*x[2]
б) поменять местами значения элементов массива X=(x1, x2);
в) в массиве A(N) компоненту с номером i (1<i<N) заменить полусуммой исходных соседних с нею компонент, соседнюю справа компоненту заменить на нуль, а соседнюю слева компоненту увеличить на 0.5;
г) u = max(x, y, z) + min(x-z, y+z, y, z);
7.11. Задайте с помощью команд если или выбор вычисления по формулам:

 

a)
б)
в) где
г)
д)
е)
ж) если точка лежит внутри круга радиусом r (r>0) с центром в точке (a,b) в противном случае


7.12. Постройте графики функций y(x), заданных командами если:

 

а) если x<=-1 то y:=1/x**2 иначе если x<=2 то y:=x*x иначе y:=4 все все в) если x<-0.5 то y:=1/abs(x) иначе если x<1 то y:=2 иначе y:=1/(x-0.5) все все
Решение г) если x<0 то y:=1 иначе если x<3.14 то y:=cos(x) иначе y:=-1 все все
б) если x<-5 то y:=-5 иначе если x<0 то y:=x иначе если x<3 то y:=2*x иначе y:=6 все все все д) если abs(x)>2 то y:=x*x иначе если x<0 то y:=-2*x иначе если x>=1 то y:=4 иначе y:=4*x*x все все все

7.13. Определите значение целочисленной переменной S после выполнения операторов:

 

а) S:=128 нц для i от 1 до 4 S:=div(S,2) кц Решение
i S
   
  128/2=64
  64/2=32
  32/2=16
  16/2=8

Ответ: S=8

г) S:=0 нц для i от 1 до 2 нц для j от 2 до 3 S:=S+i+j кц кц Решение
i j S
     
    0+1+2=3
    3+1+3=7
    7+2+2=11
    11+2+3=16

Ответ: S=16

б) S:=1; a:=1 нц для i от 1 до 3 S:=S+i*(i+1)*a a:=a+2 кц д) нц для i от 1 до 3 S:=0 нц для j от 2 до 3 S:=S+i+j кц кц
в) S:=1; a:=1 нц для i от 1 до 3 S:= S+i нц для j oт 2 до 3 S:= S+j кц кц е) нц для i от 1 до 2 S:= 0 нц для j oт 2 до 3 нц для k oт 1 до 2 S:= S+i+j+k кц кц кц

 

7.14. Определите значение переменной S после выполнения операторов:

 

а) i:=0; S:=0 нц пока i<3 i:=i+1; S:=S+i*i кц г) S:=0; N:=125 нц пока N>0 S:=S+mod(N,10) | S — сумма цифр N:=div(N,10) | числа N кц
Решение
Условие i < 3 i S
     
0 < 3? да   0+12=1
1 < 3? да   1+22=5
2 < 3? да   5+32=14
3 < 3? нет(кц)    

Ответ: S=14

Решение
Условие N > 0 S N
     
125 > 0? да 0+5=5  
12 > 0? да 5+2=7  
1 > 0? да 7+1=8  
0 > 0? нет (кц)    

Ответ: S=8

б) S:=0; i:=1 нц пока i>1 S:=S+1/i i:=i-1 кц д) а:=1; b:=1; S:=0; нц пока a<=5 a:=a+b; b:=b+a; S:=S+a+b кц
в) S:=0; i:=1; j:=5 нц пока i<j S:=S+i*j i:=i+1 j:=j-1 кц е) a:=1; b:=1 нц пока a+b<10 a:=a+1 b:=b+a кц S:=a+b

7.15. Составьте алгоритмы решения задач линейной структуры (условия этих задач заимствованы из учебного пособия В.М. Заварыкина, В.Г. Житомирского и М.П. Лапчика "Основы информатики и вычислительной техники", 1989):

а) в треугольнике известны три стороны a, b и c; найти (в градусах) углы этого треугольника, используя формулы:

 

С=180o-(А+В).

Пояснение. Обратите внимание на то, что стандартные тригонометрические функции arccos и arcsin возвращают вычисленное значение в радианной мере.
Решение:

алг Углы треугольника(арг вещ a,b,c, рез вещ UgolA,UgolB,UgolC)

нач вещ RadGr,UgolARad

| RadGr — коэф. перевода угла из радианной меры в градусную

| UgolARad — угол A (в радианах)

RadGr:=180/3.14

UgolARad:=ArcCos((b*b+c*c-a*a)/(2*b*c))

UgolA:=UgolARad*RadGr

UgolB:=ArcSin(b*sin(UgolARad)/a)*RadGr

UgolC:=180-(UgolA+UgolB)

Кон

б) в треугольнике известны две стороны a, b и угол C (в радианах) между ними; найти сторону c, углы A и B (в радианах) и площадь треугольника, используя формулы:


с2 = a2 + b2 - 2ab cos C.

Пояснение. Сначала нужно найти сторону c, а затем остальные требуемые значения;

в) в треугольнике известны три стороны a, b и c; найти радиус описанной окружности и угол A (в градусах), используя формулы:

где

г) в правильной треугольной пирамиде известны сторона основания a и угол A (в градусах) наклона боковой грани к плоскости основания; найти объем и площадь полной поверхности пирамиды, используя формулы:

 

V=Socн· H/2;
где
     

д) в усеченном конусе известны радиусы оснований R и r и угол A (в радианах) наклона образующей к поверхности большего основания; найти объем и площадь боковой поверхности конуса, используя формулы:

 

где
     

e) в правильной четырехугольной пирамиде сторона основания равна a, а боковое ребро наклонено к плоскости основания под углом A; найти объем и площадь полной поверхности пирамиды и площадь сечения, проходящего через вершину пирамиды и диагональ основания d; использовать формулы:

 

 

7.16. Составьте алгоритм решения задач развлетвляющейся структуры:

а) определить, является ли треугольник с заданными сторонами a, b, c равнобедренным;
Решение:

алг Треугольник(арг вещ a,b,c, рез лог Otvet)

дано | a>0, b>0, c>0, a+b>c, a+c>b, b+c>a

надо | Otvet = да, если треугольник равнобедренный

| Otvet = нет, если треугольник не равноведренный

Нач

если (a=b) или (a=c) или (b=c)

то Otvet:= да

иначе Otvet:= нет

Все

Кон

б) определить количество положительных чисел среди заданных чисел a, b и c;

в) меньшее из двух заданных неравных чисел увеличить вдвое, а большее оставить без изменения;

г) числа a и b — катеты одного прямоугольного треугольника, а c и d — другого; определить, являются ли эти треугольники подобными;

д) даны три точки на плоскости; определить, какая из них ближе к началу координат;

е) определить, принадлежит ли заданная точка (x, y) плоской фигуре, являющейся кольцом с центром в начале координат, с внутренним радиусом r1 и внешним радиусом r2;

ж) упорядочить по возрастанию последовательность трех чисел a, b и c.

 

 

АЛГОРИТМЫ

Что такое алгоритм?

Человек ежедневно встречается с необходимостью следовать тем или иным правилам, выполнять различные инструкции и указания. Например, переходя через дорогу на перекрестке без светофора надо сначала посмотреть направо. Если машин нет, то перейти полдороги, а если машины есть, ждать, пока они пройдут, затем перейти полдороги. После этого посмотреть налево и, если машин нет, то перейти дорогу до конца, а если машины есть, ждать, пока они пройдут, а затем перейти дорогу до конца.

В математике для решения типовых задач мы используем определенные правила, описывающие последовательности действий. Например, правила сложения дробных чисел, решения квадратных уравнений и т. д. Обычно любые инструкции и правила представляют собой последовательность действий, которые необходимо выполнить в определенном порядке. Для решения задачи надо знать, что дано, что следует получить и какие действия и в каком порядке следует для этого выполнить. Предписание, определяющее порядок выполнения действий над данными с целью получения искомых результатов, и есть алгоритм.

Алгоpитм — заранее заданное понятное и точное пpедписание возможному исполнителю совеpшить определенную последовательность действий для получения решения задачи за конечное число шагов.

Это — не определение в математическом смысле слова, а, скорее, описание интуитивного понятия алгоритма, раскрывающее его сущность.

Название "алгоритм" произошло от латинской формы имени величайшего среднеазиатского математика Мухаммеда ибн Муса ал-Хорезми (Alhorithmi), жившего в 783—850 гг. В своей книге "Об индийском счете" он изложил правила записи натуральных чисел с помощью арабских цифр и правила действий над ними "столбиком", знакомые теперь каждому школьнику. В XII веке эта книга была переведена на латынь и получила широкое распространение в Европе.

Понятие алгоритма является не только одним из главных понятий математики, но одним из главных понятий современной н



Поделиться:


Последнее изменение этой страницы: 2016-09-20; просмотров: 263; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 13.59.69.109 (0.015 с.)