Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Выбор состава и орбитального построения космической навигационно-информационной Системы (выбор числа орбит, числа орбитальных элементов Системы и определение параметров орбит)

Поиск

 

Полная орбитальная структура данной системы представляет из себя две группировки навигационных спутников и информационную систему. Система навигационных спутников состоит из спутниковой радионавигационной системы ГЛОНАСС, расположенной в трёх орбитальных плоскостях с наклонением 64,8° и высотой 19 100 км, и группировкой навигационных спутников расположенные на высоте 42709 км. Информационная система – группировка потребителей расположена на высотах от 36 000 км до 38 000 км.

Такая конфигурация орбитальной структуры позволяет обеспечивать глобальную и непрерывную зону действия системы, а также приемлемую геометрию взаимного расположения спутников для повышения точности определения координат.

– группировка ГЛОНАСС
– слой потребителей
Земля –
Рис. 8 Инвариантная геометрическая структура

На рисунке 8 изображена инвариантная геометрическая структура. Рассчитаем геометрический фактор и зону инвариантности для идеального случая.

           
   
     
 
 
 
 
 

 


Рис. 9 Идеальный случай инвариантной геометрической структуры

Составим матрицу частных производных

Корреляционная матрица равна:

 

, из матрицы видно что , , , .

–суммарный геометрический фактор.

– зона инвариантности.

P=3 – размерность физического пространства

m=16 – количество спутников

 

Из рисунка 7 видно что наша инвариантная структура не идеально и поэтому ухудшим геометрический фактор на 10%.

 

– аналогично для , .

, , .


Найдём - погрешность измерения дальности притом что ,

, , , .

Найдём - погрешность измерения скорости притом что

, , .

Найдём - шумовую погрешность определения дальности.

где – ширина спектра сигнала, – скорость электромагнитной волны в вакууме, – отношение сигнал помеха.

Найдём - шумовую погрешность определения скорости.

где – длина волны несущего сигнала, – время обработки сигнала (время измерения доплеровской частоты).

Найдём – шумовые погрешности по координатам x,y,z и временному параметру d.

Для составляющих дальности: , , ,

Для составляющих скорости: , , ,

и по аналогии для

, , – погрешности определения дальности шумовая, атмосферная, рассинхронизации и эфемеридная соответственно.

 

 

ВЫБОР СТРУКТУРЫ И ОПРЕДЕЛЕНИЕ ПАРАМЕТРОВ РАДИОНАВИГАЦИОННЫХ СИГНАЛОВ И РАДИОСИГНАЛОВ ДЛЯ ЦИФРОВОГО ИНФОРМАЦИОННОГО ОБМЕНА ПО НАПРАВЛЕНИЯМ: НАВИГАЦИОННЫЙ СПУТНИК – СПУТНИКИ-ПОТРЕБИТЕЛИ, НАВИГАЦИОННЫЙ СПУТНИК - НАВИГАЦИОННЫЕ СПУТНИКИ, А ТАКЖЕ ВЫБОР ВИДА РАЗДЕЛЕНИЯ И УПЛОТНЕНИЯ РАДИОКАНАЛОВ

В качестве радионавигационных сигналов используем сигналы, применяемые в спутниковой радионавигационной системе ГЛОНАСС.

Радионавигационные сигналы.

В системе ГЛОНАСС каждый штатный НКА в ОГ постоянно излучает шумоподобные непрерывные навигационные радиосигналы в двух диапазонах частот 1600 МГц и 1250 МГц. В НАП навигационные измерения в двух диапазонах частот позволяют исключить ионосферные погрешности измерений.

Каждый НКА имеет цезиевый АСЧ, используемый для формирования бортовой шкалы (БШВ) и навигационных радиосигналов 1600 МГц и 1250 МГц.

Шумоподобные навигационные радиосигналы в ОГ НКА различаются несущими частотами. Поскольку для взаимноантиподных НКА в орбитальных плоскостях можно применять одинаковые несущие частоты, то для 24 штатных НКА минимально необходимое число несущих частот в каждом диапазоне частот равно 12. Данное утверждение достаточно очевидно, если иметь в виду наземных потребителей (сухопутных, морских, воздушных), поскольку в зоне радиовидимости наземного потребителя не могут одновременно находиться взаимно антиподные НКА. Космический потребитель может одновременно “видеть” взаимноантиподные НКА. Однако имеются два благоприятных обстоятельства.

Рис. 10 Структура навигационного радиосигнала

Первое заключается в том, что из двух взаимноантиподных НКА хотя бы один будет находиться ниже местного горизонта по отношению к космическому потребителю. Практически невозможно применить на космическом объекте одну широконаправленную антенну, способную принимать навигационные радиосигналы от всех “видимых” НКА выше и ниже местного горизонта. Поэтому в НАП на космическом объекте применяют: либо одну широконаправленную антенну для приема навигационных радиосигналов от НКА, находящихся выше местного горизонта; либо несколько антенн и несколько приемников для приема навигационных радиосигналов от НКА, находящихся выше и ниже местного горизонта.

В обоих вариантах НАП на космическом объекте будет осуществлять эффективную пространственную селекцию навигационных радиосигналов от взаимноантиподных НКА.

Второе обстоятельство заключается в том, что в НАП в сеансе навигации осуществляется поиск несущей частоты каждого принимаемого навигационного радиосигнала в пределах узкой полосы (~ 1 кГц) около прогнозируемого значения с учетом доплеровского сдвига несущей частоты. Доплеровский сдвиг может иметь максимальные значения ± 5 кГц в НАП на наземных объектах и ± 40 кГц в НАП на низкоорбитальных космических объектах. Следовательно, в НАП на космическом объекте осуществляется эффективная доплеровская селекция навигационных радиосигналов от радиовидимых НКА.

Таким образом, навигационные радиосигналы взаимноантиподных НКА с одинаковыми несущими частотами будут надежно разделены в НАП на космическом объекте за счет пространственной и доплеровской селекции.

Навигационный радиосигнал 1600 МГц ¾ двухкомпонентный. На заданной несущей частоте в радиопередатчике формируются два одинаковых по мощности шумоподобных фазоманипулированных навигационных радиосигнала “в квадратуре” (взаимный сдвиг по фазе на ± 90°): узкополосный и широкополосный.

Узкополосный навигационный радиосигнал 1600 МГц образуется посредством манипуляции фазы несущего колебания на 180° периодической двоичной псевдослучайной последовательностью (ПСП1) с тактовой частотой F1 = 0,511 МГц и с периодом повторения Т1 = 1 мс (511 тактов). ПСП1 представляет собой М - последовательность с характеристическим полиномом 1 + X3 + X5. Путем инвертирования ПСП1 передаются метки времени (МВ) бортовой шкалы времени (БШВ) НКА и двоичные символы цифровой информации (ЦИ). Метка времени имеет длительность 0,3 с и передается в конце каждого двухсекундного интервала времени (в конце четных секунд). Метка времени содержит 30 двоичных символов длительностью 10 мс и представляет собой укороченную на один символ 31-символьную М-последовательность.

В каждой двухсекундной строке на интервале времени 1,7 с передаются 85 двоичных символов ЦИ, длительностью 20 мс и перемноженные на меандр, имеющий длительность символов 10 мс. Границы символов меандра, МВ и ЦИ когерентны. В приемнике с помощью меандра осуществляется символьная синхронизация для МВ и с ее помощью ¾ строчная и символьная синхронизация ЦИ.

Широкополосный навигационный радиосигнал 1600 МГц образуется посредством манипуляции фазы несущего колебания на 180° периодической двоичной последовательностью ПСП2 с тактовой частотой F2=5,11 МГц. Путем инвертирования ПСП2 передаются двоичные символы ЦИ длительностью 20 мс.

Навигационный радиосигнал 1250 МГц, излучаемый НКА первой модификации ¾ однокомпонентный широкополосный шумоподобный радиосигнал, образуемый посредством манипуляции фазы несущего колебания на 180° периодической двоичной ПСП2 (F2 = 5,11 МГц) без инвертирования, т.е. без передачи ЦИ. Навигационный радиосигнал 1250 МГц, излучаемый НКА второй модификации, будет содержать два одинаковых по мощности шумоподобных радиосигнала 1250 МГц в квадратуре:

  1. узкополосный навигационный радиосигнал 1250 МГц с ПСП1 (F1 = 0,511 МГц, T1=1 мс);
  2. широкополосный навигационный радиосигнал 1250 МГц с ПСП2 (F2=5,11 МГц) без ЦИ.

Поскольку частота инвертирования ПСП много меньше ее тактовой частоты, то ширина основного “лепестка” огибающей спектра мощности шумоподобного фазоманипулированного навигационного радиосигнала равна двойному значению тактовой частоты ПСП. Следовательно, ширина основного “лепестка” огибающей спектра мощности узкополосного навигационного радиосигнала равна 1,022 МГц, широкополосного ¾ 10,22 МГц.

При проектировании СРНС ГЛОНАСС была выработана следующая “сетка” номинальных значений несущих частот для навигационных радиосигналов в двух диапазонах частот ¾ верхнем 1600 МГц (В) и нижнем 1250 МГц (Н):

¦ вkв0+kD ¦ в; ¦ в0=1602,0000 МГц;

D ¦ в=0,5625 МГц;

¦ нkн0+kD ¦ н; ¦ н0=1246,0000 МГц;

D ¦ н=0,4375 МГц;

¦ вk нk = 9/7;

где k ¾ условный порядковый номер пары несущих частот ¦ вk и ¦ нk для навигационных радиосигналов 1600 МГц и 1250 МГц.

Радиопередатчики навигационных радиосигналов в НКА первой модификации излучают навигационные радиосигналы на переключаемых несущих частотах с номерами k = 1,...,24.

Приведем значения крайних несущих частот навигационных радиосигналов:

¦ в1=1602,5625 МГц; ¦ в24=1615,5000 МГц;

¦ н1=1246,4375 МГц; ¦ н24=1256,5000 МГц;

Рабочие спектры навигационных радиосигналов на несущих частотах с номерами k = 1,...,24 занимают полосы частот:

а) узкополосные навигационные радиосигналы 1602,0...1616,0 МГц;

б) широкополосные навигационные радиосигналы 1597,4......1620,6 МГц, 1241,3...1261,6 МГц.



Поделиться:


Последнее изменение этой страницы: 2016-09-20; просмотров: 270; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.133.109.121 (0.009 с.)