Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Подбор сетевых и подпиточных насосовСодержание книги
Поиск на нашем сайте
Напор сетевых насосов следует отдельно определять для отопительного и неотопительного периодов по формуле: (62) где - потери напора в установках на источнике теплоты (при отсутствии более точных данных, могут быть приняты равными 30 м); - потери напора в подающем трубопроводе; - потери напора в обратном трубопроводе; - потери напора в местной системе теплопотребления (не менее 40м). Потери напора в подающем и обратном трубопроводах для отопительного периода принимают по результатам гидравлического расчета при пропуске суммарных расчетных расходов воды. Потери напора для неотопительного периода а). в подающих трубопроводах: (63) б). в обратном трубопроводе открытых систем теплоснабжения: (64) где - суммарный расход сетевой воды на головном участке системы теплоснабжения в отопительный период; - максимальный расход сетевой воды на горячее водоснабжение в неотопительный период, определяемый по формуле (48). Подача (производительность) рабочих насосов а) сетевых насосов для закрытых систем теплоснабжения в отопительный период - по суммарному расчетному расходу воды, определяемому по формуле (46) учебного пособия; б) сетевых насосов для открытых систем теплоснабжения в отопительный период - по суммарному расчетному расходу воды, определяемому при k 4 =1,4 по формуле (65) в) сетевых насосов для закрытых и открытых систем теплоснабжения в неотопительный период - по максимальному расходу воды на горячее водоснабжение в неотопительный период (формула (48)). Число сетевых насосов следует принимать не менее двух, один из которых - резервный; при пяти рабочих сетевых насосах, соединённых параллельно в одной группе, допускается резервный насос не устанавливать. Напор подпиточных насосов H пн должен определяться из условий поддержания в водяных тепловых сетях статического напора Н ст и преодоления потерь напора в подпиточной линии D H пл, величина которых, при отсутствии более точных данных, принимается равной 10-20 м. (66) здесь z – разность отметок уровня воды в подпиточном баке и оси подпиточных насосов. Подача подпиточных насосов а). в закрытых системах теплоснабжения принимается равной расчетному расходу воды на компенсацию утечки из тепловой сети : (67) б). в открытых системах - равной сумме максимального расхода воды на горячее водоснабжение и расчетного расхода воды на компенсацию утечки : (68) Расчетный расход воды на компенсацию утечки , принимается в размере 0,75% от объема воды в системе теплоснабжения, аварийный расход на компенсацию утечки принимается в размере 2% от объема воды в системе теплоснабжения. Объем воды в системе теплоснабжения допускается принимать равным 65 м3 на 1 МВт расчетного теплового потока при закрытой системе теплоснабжения и 70 м3 на 1 МВт - при открытой системе теплоснабжения. Число параллельно включенных подпиточных насосов а). в закрытых системах теплоснабжения не менее двух, один из которых является резервным; б). в открытых системах не менее трех, один из которых также является резервным. Технические данные насосов для систем теплоснабжения приведены в приложениях №21 и №22. При подборе насосов следует учитывать требования по максимальной температуре воды, по величине допускаемых напоров на всасывающем патрубке насоса. Из условий экономии потребления электроэнергии величина КПД насоса , не должна быть менее 90% от величины максимального КПД . Указание моделей и количества сетевых и подпиточных насосов произвести в разделе №12.
Расчет толщины тепловой изоляции
Расчет толщины тепловой изоляции трубопроводов d к по нормированной плотности теплового потока выполняют по формуле: (69) где d - наружный диаметр трубопровода, м; е - основание натурального логарифма; l к - теплопроводность теплоизоляционного слоя, Вт/(м ·°С), (определяемая по приложению №15 и №24); R к - термическое сопротивление слоя изоляции, м ·°С/Вт, величину которого определяют в зависимости от способа прокладки трубопровода по следующим выражениям: При надземной прокладке ( также прокладке в тоннелях и техподпольях): (70)
При подземной прокладке
канальная прокладка (71) бесканальная прокладка (72) где - нормированная линейная плотность теплового потока, Вт/м (принимается по приложению 16); - средняя за период эксплуатации температура теплоносителя (при параметрах теплоносителя 150/90 принимается для подающего трубопровода 90 С, для обратного 50 С); - среднегодовая температура окружающей среды (определяется по приложению №18 в зависимости от вида прокладки трубопровода); - коэффициент, принимаемый по приложению №19. - термическое сопротивление поверхности изоляционного слоя, м·°С /Вт, определяемое по формуле: (73) здесь - коэффициент теплоотдачи с поверхности тепловой изоляции в окружающий воздух (при прокладке в каналах = 8; при прокладке в техподпольях и тоннелях = 11, при надземной прокладке = 29); d – наружный диаметр трубопровода, м; - термическое сопротивление поверхности канала, определяемое по формуле: (74) здесь - коэффициент теплоотдачи от воздуха к внутренней поверхности канала ( = 8 Вт/(м² ·°С)); F - внутреннее сечение канала, м2; P - периметр сторон по внутренним размерам, м; - термическое сопротивление стенки канала, определяемое по формуле: , (75) здесь - теплопроводность стенки канала (для железобетона = 2,04 Вт/(м·°С)); - наружный эквивалентный диаметр канала, определяемый по наружным размерам канала, м; - термическое сопротивление грунта, определяемое по формуле: , (76) здесь - теплопроводность грунта, зависящая от его структуры и влажности (при отсутствии данных его значение можно принимать для влажных грунтов = 2-2,5 Вт/(м·°С), для сухих грунтов = 1,0-1,5 Вт/(м·°С)); h - глубина заложения оси теплопровода от поверхности земли, м; - добавочное термическое сопротивление, учитывающее взаимное влияние труб при бесканальной прокладке, величину которого определяют по формулам: · для подающего трубопровода (77) · для обратного трубопровода (78) где h - глубина заложения осей трубопроводов, м; b - расстояние между осями трубопроводов, м, принимаемое в зависимости от их диаметров условного прохода по данной таблице:
Таблица №3. Расстояние между осями трубопроводов
, - коэффициенты, учитывающие взаимное влияние температурных полей соседних теплопроводов, определяемые по формулам: (79) (80) здесь , - нормированные линейные плотности тепловых потоков соответственно для подающего и обратного трубопроводов, Вт/м.
|
||||||||||||||||||||||||||||||
Последнее изменение этой страницы: 2016-09-19; просмотров: 140; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.142.251.204 (0.005 с.) |