Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Прикладные аспекты моделирования↑ Стр 1 из 3Следующая ⇒ Содержание книги
Поиск на нашем сайте
Основы моделирования систем Модели и моделирование
Модель и моделирование - универсальные понятия, атрибуты одного из наиболее мощных методов познания в любой профессиональной области, познания системы, процесса, явления. Вид модели и методы ее исследования больше зависят от информационно - логических связей элементов и подсистем моделируемой системы, ресурсов, связей с окружением, а не от конкретного наполнения системы. У моделей, особенно математических, есть особенность - развитие модельного стиля мышления, позволяющего вникать в структуру и внутреннюю логику моделируемой системы. Построение модели - системная задача, требующая анализа и синтеза исходных данных, гипотез, теорий, знаний специалистов. Системный подход позволяет не только построить модель реальной системы, но и использовать эту модель для оценки (например, эффективности управления, функционирования) системы. Модель - это объект или описание объекта, системы для замещения одной системы (оригинала) другой системой для лучшего изучения оригинала или воспроизведения каких-либо его свойств. Например, отображая физическую систему на математическую систему, получим математическую модель физической системы. Любая модель строится и исследуется при определенных допущениях, гипотезах. Пример. Рассмотрим физическую систему: тело массой m скатывающееся по наклонной плоскости с ускорением a, на которое воздействует сила F. Исследуя такие системы, Ньютон получил математическое соотношение: F = m*a. Это физико-математическая модель системы или математическая модель физической системы. При описании этой системы приняты следующие гипотезы: · поверхность идеальна (т.е. коэффициент трения равен нулю); · тело находится в вакууме (т.е. сопротивление воздуха равно нулю); · масса тела неизменна; · тело движется с одинаковым постоянным ускорением в любой точке. Пример. Физиологическая система (система кровообращения человека) - подчиняется некоторым законам термодинамики. Описывая эту систему на физическом (термодинамическом) языке балансовых законов, получим физическую, термодинамическую модель физиологической системы. Если записать эти законы на математическом языке, т.е. соответствующие термодинамические уравнения, то уже получаем математическую модель системы кровообращения. Пример. Совокупность предприятий функционирует на рынке, обмениваясь товарами, сырьем, услугами, информацией. Если описать экономические законы, правила их взаимодействия на рынке с помощью математических соотношений, например, системы алгебраических уравнений, где неизвестными будут величины прибыли, получаемые от взаимодействия предприятий, а коэффициентами уравнения будут значения интенсивностей таких взаимодействий, то получим экономико-математическую модель системы предприятий на рынке. Если банк выработал стратегию кредитования, смог описать ее с помощью экономико - математических моделей и прогнозирует свою тактику кредитования, то он имеет большую устойчивость и жизнеспособность. Слово " модель " (лат. modelium) означает "мера", "способ", "сходство с какой-то вещью". Моделирование базируется на математической теории подобия, согласно которой абсолютное подобие может иметь место лишь при замене одного объекта другим точно таким же. При моделировании большинства систем абсолютное подобие невозможно, и основная цель моделирования - модель достаточно хорошо должна отображать функционирование моделируемой системы. По уровню, "глубине" моделирования модели бывают: · эмпирические - на основе эмпирических фактов, зависимостей; · теоретические - на основе математических описаний; · смешанные, полуэмпирические - на основе эмпирических зависимостей и математических описаний. Проблема моделирования состоит из трех задач: · построение модели (эта задача менее формализуема и конструктивна, в том смысле, что нет алгоритма для построения моделей); · исследование модели (эта задача более формализуема, имеются методы исследования различных классов моделей); · использование модели (конструктивная и конкретизируемая задача). Модель М, описывающая систему S(x1, x2,..., xn; R), имеет вид: М = (z1, z2,..., zm; Q), где zi Z, i = 1, 2,..., n, Q, R - множества отношений над X - множеством входных, выходных сигналов и состояний системы, Z - множество описаний, представлений элементов и подмножеств X. Схема построения модели М системы S с входными сигналами X и выходными сигналами Y изображена на рис. 1.1.
Если на вход М поступают сигналы из X и на входе появляются сигналы Y, то задан закон (правило f функционирования модели) системы. Моделирование - это универсальный метод получения описания функционирования объекта и использования знаний о нем. Моделирование используется в любой профессиональной деятельности Классификацию моделей проводят по различным критериям. Модель называется статической, если среди параметров, участвующих в ее описании, нет временного параметра. Статическая модель в каждый момент времени дает лишь "фотографию" системы, ее срез. Пример. Закон Ньютона F=a*m - это статическая модель движущейся с ускорением a материальной точки массой m. Эта модель не учитывает изменение ускорения от одной точки к другой. Модель динамическая, если среди ее параметров есть временной параметр, т.е. она отображает систему (процессы в системе) во времени.
Пример. Динамическая модель закона Ньютона будет иметь вид: F(t)=a(t)*m(t). Модель дискретная, если она описывает поведение системы только в дискретные моменты времени. Пример. Если рассматривать только t=0, 1, 2, …, 10 (сек), то модель St=gt2/2 или числовая последовательность S0=0, S1=g/2, S2=2g, S3=9g/2,:, S10=50g может служить дискретной моделью движения свободно падающего тела. Модель непрерывная, если она описывает поведение системы для всех моментов времени некоторого промежутка времени. Пример. Модель S=gt2/2, 0 < t < 100 непрерывна на промежутке времени (0;100). Модель имитационная, если она предназначена для испытания или изучения возможных путей развития и поведения объекта путем варьирования некоторых или всех параметров модели. Пример. Пусть модель экономической системы производства товаров двух видов 1 и 2, в количестве x1 и x2 единиц и стоимостью каждой единицы товара a1 и a2 на предприятии описана в виде соотношения: a1x1 + a2x2 = S, где S - общая стоимость произведенной предприятием всей продукции (вида 1 и 2). Можно ее использовать в качестве имитационной модели, по которой можно определять (варьировать) общую стоимость S в зависимости от тех или иных значений объемов производимых товаров. Модель детерминированная, если каждому входному набору параметров соответствует вполне определенный и однозначно определяемый набор выходных параметров; в противном случае - модель недетерминированная, стохастическая (вероятностная). Пример. Приведенные выше физические модели - детерминированные. Если в модели S = gt2 / 2, 0 < t < 100 мы учли бы случайный параметр - порыв ветра с силой p при падении тела: S(p) = g(p) t2 / 2, 0 < t < 100, то мы получили бы стохастическую модель (уже не свободного!) падения. Модель функциональная, если она представима в виде системы каких- либо функциональных соотношений. Модель теоретико-множественная, если она представима с помощью некоторых множеств и отношений принадлежности им и между ними. Пример. Пусть задано множество X = {Николай, Петр, Николаев, Петров, Елена, Екатерина, Михаил, Татьяна} и отношения: Николай - супруг Елены, Екатерина - супруга Петра, Татьяна - дочь Николая и Елены, Михаил - сын Петра и Екатерины, семьи Михаила и Петра дружат друг с другом. Тогда множество X и множество перечисленных отношений Y могут служить теоретико-множественной моделью двух дружественных семей. Модель логическая, если она представима предикатами, логическими функциями. Например, совокупность двух логических функций вида: z = x y x y, p = x y может служить математической моделью одноразрядного сумматора. Модель игровая, если она описывает, реализует некоторую игровую ситуацию между участниками игры (лицами, коалициями). Пример. Пусть игрок 1 - добросовестный налоговый инспектор, а игрок 2 - недобросовестный налогоплательщик. Идет процесс (игра) по уклонению от налогов (с одной стороны) и по выявлению сокрытия уплаты налогов (с другой стороны). Игроки выбирают натуральные числа i и j (i, j n), которые можно отождествить, соответственно, со штрафом игрока 2 за неуплату налогов при обнаружении факта неуплаты игроком 1 и с временной выгодой игрока 2 от сокрытия налогов. Рассмотрим матричную игру с матрицей выигрышей порядка n. Каждый элемент этой матрицы A определяется по правилу aij = |i - j|. Модель игры описывается этой матрицей и стратегией уклонения и поимки. Эта игра - антагонистическая. Модель алгоритмическая, если она описана некоторым алгоритмом или комплексом алгоритмов, определяющим ее функционирование, развитие. Нужно помнить, что не все модели могут быть исследованы или реализованы алгоритмически. Пример. Моделью вычисления суммы бесконечного убывающего ряда чисел может служить алгоритм вычисления конечной суммы ряда до некоторой заданной степени точности. Алгоритмической моделью корня квадратного из числа x может служить алгоритм вычисления его приближенного сколь угодно точного значения по известной рекуррентной формуле. Модель структурная, если она представима структурой данных или структурами данных и отношениями между ними. Например, с труктурной моделью может служить описание (табличное, графическое, функциональное или другое) структуры экосистемы. Модель графовая, если она представима графом или графами и отношениями между ними. Модель иерархическая (древовидная), если представима некоторой иерархической структурой (деревом). Пример. Для решения задачи нахождения маршрута в дереве поиска можно построить, например, древовидную модель (рис. 1.2):
Модель сетевая, если она представима некоторой сетевой структурой. Пример. Строительство нового дома включает операции, приведенные в нижеследующей таблице.
Сетевая модель (сетевой график) строительства дома дана на рис. 1.3.
Две работы, соответствующие дуге 4-5, параллельны, их можно либо заменить одной, представляющей совместную операцию (монтаж электропроводки и настил крыши) с новой операцией длительностью 3+5=8, либо ввести на одной дуге фиктивное событие. Модель языковая, лингвистическая, если она представлена некоторым лингвистическим объектом, формализованной языковой системой или структурой. Иногда такие модели называют вербальными, синтаксическими. Например, правила дорожного движения - языковая, структурная модель движения транспорта и пешеходов на дорогах. Пусть B - множество производящих основ существительных, C - множество суффиксов, P - прилагательных, "+" - операция конкатенации слов, ":=" - операция присваивания, "=>" - операция вывода (выводимости новых слов), Z - множество значений (смысловых) прилагательных. Языковая модель M словообразования: <pi>= <bi> + <сi>. При bi - "рыб(а)", сi - "н(ый)", получаем по этой модели pi - "рыбный", zi - "приготовленный из рыбы". Модель визуальная, если она позволяет визуализировать отношения и связи моделируемой системы, особенно в динамике. Например, на экране компьютера часто пользуются визуальной моделью того или иного объекта, например, клавиатуры в программе - тренажере по обучению работе на клавиатуре. Модель натурная, если она есть материальная копия объекта моделирования. Например, глобус - натурная географическая модель земного шара. Модель геометрическая, графическая, если она представима геометрическими образами и объектами. Например, макет дома является натурной геометрической моделью строящегося дома. Вписанный в окружность многоугольник дает модель окружности. Именно она используется при изображении окружности на экране компьютера. Прямая линия является моделью числовой оси, а плоскость часто изображается как параллелограмм. Модель клеточно-автоматная, если она представляет систему с помощью клеточного автомата или системы клеточных автоматов. Клеточный автомат - дискретная динамическая система, аналог физического (непрерывного) поля. Клеточно-автоматная геометрия - аналог евклидовой геометрии. Неделимый элемент евклидовой геометрии - точка, на основе ее строятся отрезки, прямые, плоскости и т.д. Неделимый элемент клеточно-автоматного поля - клетка, на основе её строятся кластеры клеток и различные конфигурации клеточных структур. Представляется клеточный автомат равномерной сетью клеток ("ячеек") этого поля. Эволюция клеточного автомата разворачивается в дискретном пространстве - клеточном поле. Смена состояний в клеточно-автоматном поле происходит одновременно и параллельно, а время идет дискретно. Несмотря на кажущуюся простоту их построения, клеточные автоматы могут демонстрировать разнообразное и сложное поведение. В последнее время они широко используются при моделировании не только физических, но и социально-экономических процессов. Рис. 1.4. Окно справа - состояние клеточного поля. В верхней таблице показано исходное поле, слабо загрязненное, в нижней таблице показано - после 120 циклов загрязнения, в левом верхнем углу - "Микроскоп", увеличивающий кластер поля, в середине слева - график динамики загрязнения, внизу слева - индикаторы загрязнения. Модель фрактальная, если она описывает эволюцию моделируемой системы эволюцией фрактальных объектов. Если физический объект однородный (сплошной), т.е. в нем нет полостей, то можно считать, что плотность не зависит от размера. Например, при увеличении параметра объекта R до 2R масса объекта увеличится в R2 раз, если объект- круг и в R3 раз, если объект - шар, т.е. существует связь массы и длины M(R) ~ Rn. Здесь n - размерность пространства. Объект, у которого масса и размер связаны этим соотношением, называется "компактным". Плотность его
Если объект (система) удовлетворяет соотношению M(R) ~ Rf(n), где f(n) < n, то такой объект называется фрактальным. Его плотность не будет одинаковой для всех значений R, и она масштабируется так: Так как f(n) - n < 0, то плотность фрактального объекта уменьшается с увеличением размера, а ρ(R) является количественной мерой разряженности объекта. Пример. Пример фрактальной модели - множество Кантора. Рассмотрим отрезок [0;1]. Разделим его на 3 части и выбросим средний отрезок. Оставшиеся 2 промежутка опять разделим на три части и выкинем средние промежутки и т.д. Получим множество, называемое множеством Кантора. В пределе получаем несчетное множество изолированных точек (рис. 1.5)
Можно показать, что если n - размерность множества Кантора, то n=ln2/ln3≈0,63, т.е. этот объект (фрактал) еще не состоит только из изолированных точек, хотя уже и не состоит из отрезка.
Часто в системном анализе при модельном подходе исследования может совершаться одна методическая ошибка, а именно, - построение корректных и адекватных моделей (подмоделей) подсистем системы и их логически корректная увязка не дает гарантий корректности построенной таким способом модели всей системы. Модель, построенная без учета связей системы со средой и ее поведения по отношению к этой среде, может часто лишь служить еще одним подтверждением теоремы Геделя, а точнее, ее следствия, утверждающего, что в сложной изолированной системе могут существовать истины и выводы, корректные в этой системе и некорректные вне ее. Наука моделирования состоит в разделении процесса моделирования (системы, модели) на этапы (подсистемы, подмодели), детальном изучении каждого этапа, взаимоотношений, связей, отношений между ними и затем эффективного описания их с максимально возможной степенью формализации и адекватности. В случае нарушения этих правил получаем не модель системы, а модель "собственных и неполных знаний". Моделирование рассматривается как особая форма эксперимента, эксперимента не над самим оригиналом, т.е. простым или обычным экспериментом, а над копией оригинала. Здесь важен изоморфизм систем оригинальной и модельной. Изоморфизм - равенство, одинаковость, подобие. Модели и моделирование применяются по основным направлениям:
Компьютерное моделирование
Компьютерное моделирование, от постановки задачи до получения результатов, проходит следующие этапы: 1. Постановка задачи: · Формулировка задачи. · Определение цели и приоритетов моделирования. · Сбор информации о системе, объекте моделирования. · Описание данных (их структуры, диапазона, источника и т.д.). 2. Предмодельный анализ: · Анализ существующих аналогов и подсистем. · Анализ технических средств моделирования: · ЭВМ, · периферии. · Анализ программного обеспечения: · языков программирования, · пакетов прикладных программ, · инструментальных сред. · Анализ математического обеспечения: моделей, методов, алгоритмов. 3. Анализ задачи (модели): · Разработка структур данных. · Разработка входных и выходных спецификаций, форм представления данных. · Проектирование структуры и состава модели (подмоделей). 4. Исследование модели: · Выбор методов исследования подмоделей. · Выбор, адаптация или разработка алгоритмов. · Сборка модели в целом из подмоделей. · Идентификация модели, если в этом есть необходимость. · Формулировка используемых критериев адекватности, устойчивости и чувствительности модели. 5. Программирование (проектирование программы): · Выбор метода тестирования и тестов (контрольных примеров). · Кодирование на языке программирования (написание команд). · Комментирование программы. 6. Тестирование и отладка: · Синтаксическая отладка. · Семантическая отладка (отладка логической структуры). · Тестовые расчеты, анализ результатов тестирования. · Оптимизация программы. 7. Оценка моделирования: · Оценка средств моделирования. · Оценка адекватности моделирования. · Оценка чувствительности модели. · Оценка устойчивости модели. · Документирование. · Описание задачи, целей. · Описание модели, метода, алгоритма. · Описание среды реализации. · Описание возможностей и ограничений. · Описание входных и выходных форматов, спецификаций. · Описание тестирования. · Создание инструкций для пользователя. 8. Сопровождение: · Анализ применения, периодичности использования, количества пользователей, типа использования (диалоговый, автономный и др.), анализ отказов во время использования модели. · Обслуживание модели, алгоритма, программы и их эксплуатация. · Расширение возможностей: включение новых функций или изменение режимов моделирования, в том числе и под модифицированную среду. · Нахождение, исправление скрытых ошибок в программе, если таковые найдутся. 9. Использование модели. Математическое и компьютерное моделирование поэтапно рассмотрим на примере следующей модели производства. Для этого возьмем укрупненные этапы моделирования производства. Генетические алгоритмы
Идея генетических алгоритмов "подсмотрена" у систем живой природы, у систем, эволюция которых развертывается в сложных системах достаточно быстро. Генетический алгоритм - это алгоритм, основанный на имитации генетических процедур развития популяции в соответствии с принципами эволюционной динамики. Генетические алгоритмы используются для решения задач оптимизации (многокритериальной), для задач поиска и управления. Данные алгоритмы адаптивны, они развивают решения и развиваются сами. Особенность этих алгоритмов - их успешное использование при решении сложных проблем. Пример. Рассмотрим задачу безусловной целочисленной оптимизации (размещения): найти максимум функции f(i), i - набор из n нулей и единиц, например, при n = 5, i = (1, 0, 0, 1, 0). Это очень сложная комбинаторная задача для обычных, "негенетических" алгоритмов. Генетический алгоритм может быть построен на основе следующей укрупненной процедуры: 1. Генерируем начальную популяцию (набор допустимых решений задачи) - I0 = (i1, i2,:, in), ij {0,1} и определяем некоторый критерий достижения "хорошего" решения, критерий остановки , процедуру СЕЛЕКЦИЯ, процедуру СКРЕЩИВАНИЕ, процедуру МУТАЦИЯ и процедуру обновления популяции ОБНОВИТЬ; 2. k = 0, f0 = max{f(i), i I0}; 3. выполнять пока не(): · с помощью вероятностного оператора (селекции) выбираем два допустимых решения (родителей) i1, i2 из выбранной популяции (вызов процедуры СЕЛЕКЦИЯ); · по этим родителям строим новое решение (вызов процедуры СКРЕЩИВАНИЕ) и получаем новое решение i; · модифицируем это решение (вызов процедуры МУТАЦИЯ); · если f0 < f(i) то f0 = f(i); · обновляем популяцию (вызов процедуры ОБНОВИТЬ); · k = k + 1 Подобные процедуры определяются с использованием аналогичных процедур живой природы (на том уровне знаний о них, что мы имеем). Процедура СЕЛЕКЦИЯ может из случайных элементов популяции выбирать элемент с наибольшим значением f(i). Процедура СКРЕЩИВАНИЕ (кроссовер) может по векторам i1, i2 строить вектор i, присваивая с вероятностью 0.5 соответствующую координату каждого из этих векторов - родителей. Это самая простая процедура. Используют и более сложные процедуры, реализующие более полные аналоги генетических механизмов. Процедура МУТАЦИЯ также может быть простой или сложной. Например, простая процедура с задаваемой вероятностью для каждого вектора меняет его координаты на противоположные (0 на 1, и наоборот). Процедура ОБНОВИТЬ заключается в обновлении всех элементов популяции в соответствии с указанными процедурами. Хотя генетические алгоритмы и могут быть использованы для решения задач, которые, нельзя решить другими методами, они не гарантируют нахождение оптимального решения, по крайней мере, за приемлемое время. Здесь более уместны критерии типа "достаточно хорошо и достаточно быстро". Главное же преимущество заключается в том, что они позволяют решать сложные задачи, для которых не разработаны пока устойчивые и приемлемые методы, особенно на этапе формализации и структурирования системы. Генетические алгоритмы эффективны в комбинации с другими классическими алгоритмами, эвристическими процедурами, а также в тех случаях, когда о множестве решений есть некоторая дополнительная информация, позволяющая настраивать параметры модели, корректировать критерии отбора, эволюции.
Основы принятия решений
Принятие решения и деятельность человека в социальной, экономической, политической, идеологической, военной сферах тесно связаны. В них крайне нежелательны ошибки, которые могут привести к пагубным последствиям. Но из-за ограниченных информационных возможностей человека ошибки всегда возможны. Поэтому есть настоятельная необходимость применения научного подхода к обоснованию и принятию решений. Принятие решений, наряду с прогнозированием, планированием и др. является функцией управления. Все функции управления направлены так или иначе на формирование или реализацию решений. При прогнозировании и планировании принимаются решения, связанные с выбором методов и средств, организацией работы, оценкой достоверности информации, выбором наиболее достоверного варианта прогноза и наилучшего варианта плана. Функция принятия решений является с методологической и технологической точек зрения более общей, чем другие функции управления. Для лица, принимающего решение (ЛПР), принятие решений является основной задачей, которую он обязан исполнять в процессе управления. Поэтому знание методов, технологий и средств решений этой задачи является необходимым элементом квалификации руководителя, базой для дальнейшего управления. Конечным результатом любой задачи принятия решений становится решение, конструктивное предписание к действию. Решение является одним из видов мыслительной деятельности и имеет следующие признаки: · имеется выбор из множества возможностей; · выбор ориентирован на сознательное достижение целей; · выбор основан на сформировавшейся установке к действию. Решение тем эффективнее, чем больше степень достижения целей и меньше стоимость затрат. Принятие решения - это выбор одного из множества рассматриваемых допустимых вариантов. Обычно их число конечно, а каждый вариант выбора определяет некоторый результат (экономический эффект, прибыль, выигрыш, полезность, надежность и т.д.), допускающий количественную оценку. Такой результат обычно называется полезностью решения. Таким образом, ищется вариант с наибольшим значением полезности решения. Возможен и подход с минимизацией противоположной оценки, например, отрицательной величины полезности. Часто на практике встречается ситуация, когда каждому варианту решения соответствует единственный результат (детерминированность выбора решения), хотя возможны и другие случаи, например, когда каждому варианту i и условию j, характеризующему полезность, соответствует результат решения xij. Таким образом, можно говорить о матрице решений ||xij||, i = 1,2,…,m; j =1,2,…,m. Чтобы оценить решение, необходимо уметь оценивать все его последствия. Существуют различные подходы для такой оценки. Например, если решения альтернативные, то можно последствия каждого из них характеризовать: · суммой его наибольшего и наименьшего результатов, · максимумом из возможных таких сумм, · максимумом из максимумов по всем вариантам (оптимистическая позиция выбора), · максимумом из среднего арифметического (нейтральная позиция выбора), · максимумом из минимума (пессимистическая позиция) и др. Классические модели принятия решений, как правило, являются оптимизационными, ставящими цель максимизировать выгоду и на основе этих моделей получить практическую прибыль. Так как теоретиков больше интересует первая сторона, а практиков - вторая, то при разработке и использовании таких моделей необходимо их тесное сотрудничество. Практические рекомендации могут быть получены, если при построении модели принятия решений придать большее значение разработке имитационной модели принятия решений, с привлечением экспериментальных, полуэкспериментальных и теоретических методов. Кроме классических, оптимизационных процедур принятия решений существуют и ряд базовых неклассических (неоклассических) процедур, технологий принятия решений. Классификация задач принятия решений проводится по различным признакам. Наиболее существенными являются: · степень определенности информации; · использование эксперимента для получения информации; · количество лиц, принимающих решения; · содержание решений; · направленность решений. На процесс принятия решения часто воздействуют различные случайные (стохастические) параметры, усложняющие процедуру. Недостаток информации об их распределении приводит к необходимости принятия гипотез об области их изменения и о характере их распределения. Проблемы принятия решений с недетерминированными параметрами называют проблемами принятия решений в условиях недостатка информации. Чем меньше информации у исследователей, тем больше может оказаться различие между ожидаемыми и действительными результатами принимаемых решений в целом. Мера влияния информации (параметров) на результат решения называется релевантностью. Особо важно в социально-экономической сфере принятие решения при наличии рисков (неплатежей, не возвратов кредитов, ухудшения условий жизни и т.д.). Формализуемые решения
Формализуемые решения принимаются на основе соответствующих математических методов (алгоритмов). Математическая модель задачи оптимизации формализуемого решения включает следующие элементы: 1. заданную оптимизируемую целевую функцию (критерий управляемости): Ф = F(x1, x2,…,xn), (j = 1, 2,…,n), где xj - параметры, учитываемые при принятии решения (отражающие ресурсы принятия решений); 2. условия, отражающие ограниченность ресурсов и действий при принятии решений: gi(xj) < ai, ki (xj) = bi; cj < xj < di, i = 1, 2,…,m; j = 1, 2,…, n. Непременным требованием для решения задачи оптимизации является условие n > m. В зависимости от критерия эффективности, стратегий и факторов управления выбирается тот или иной метод (алгоритм) оптимизации. Основными являются следующие классы методов: 1. методы линейного и динамического программирования (принятия решения об оптимальном распределении ресурсов); 2. методы теории массового обслуживания (принятие решения в системе со случайным характером поступления и обслуживания заявок на ресурсы); 3. методы имитационного моделирования (принятие решения путем проигрывания различных ситуаций, анализа откликов системы на различные наборы задаваемых ресурсов); 4. методы теории игр (принятие решений с помощью определения стратегии в тех или иных состязательных задачах); 5. методы теории расписаний (принятие решений с помощью разработки календарных расписаний выполнения работ и использования ресурсов); 6. методы сетевого планирования и управления (принятие решений с помощью оценки и перераспределения ресурсов при выполнении проектов, изображаемых сетевыми графиками); 7. методы многокритериальной (векторной) оптимизации (принятие решений при условии существования многих критериев оптимальности решения) и др. Выбор решения - заключительный и наиболее ответственный этап процесса принятия решений. Здесь необходимо осмыслить всю информацию, полученную на этапах постановки задачи и формирования решений и использовать ее для обоснования выбора решения. В реальных задачах принятия решений к началу этапа выбора решения еще сохраняется большая неопределенность, поэтому сразу осуществить выбор единственного решения из множества допустимых решений очень сложно. Поэтому на практике используется принцип последовательного уменьшения неопределенности, который заключается в последовательном трехэтапном (обычно) сужении множества решений: · На первом этапе исходное множество альтернативных решений Y сужается (используя ограничения на ресурсы) до множества приемлемых или допустимых решений Y1 Y. · На втором этапе множество допустимых решений Y1 сужается (учитывая критерий оптимальности) до множества эффективных решений Y2 Y1. · На третьем этапе осуществляется выбор (на основе критерия выбора и дополнительной информации, в том числе и экспертной) единственного решения Y* Y2. Система принятия решений – это совокупность организационных, методических, программно-технических, информационно-логических и технологических обеспечений принятия решений для достижения поставленных целей. Общая процедура принятия решений может состоять из следующих этапов: · анализ проблемы и среды (цели принятия решения, их приоритеты, глубина и ограничения рассмотрения, элементы, связи, ресурсы среды, критерии оценки); · постановка задачи (определение спецификаций задачи, альтернатив и критериев выбора решения); · выбор (адаптация, разработка) метода решения задачи; · выбор (адаптация, разработка) метода оценки решения; · решение задачи (математическая и компьютерная обработка данных, имитационные и экспертные оценки, уточнение и модификация, если это необходимо); · анализ и интерпретация результатов. Задачи принятия решений могут быть поставлены и решены в условиях: · детерминированности, т.е. определенности, формализуемости и единственности целевой функции, детерминированности риска, когда возможные решения, исходы распределены вероятностно; · недетерминированности, т.е. неопределенности, неточности, плохой формализуемости информации. В моделях принятия решений испо
|
||||||||||||||||||||||||||||||||||||||||||||||||||
Последнее изменение этой страницы: 2016-09-19; просмотров: 398; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.224.44.233 (0.012 с.) |