Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Лошадиная сила и работа лошади

Поиск

 

Мы часто слышим выражение «лошадиная сила» и привыкли к нему. Поэтому мало кто отдает себе отчет в том, что это старинное наименование совершенно неправильно. «Лошадиная сила» – не сила, а мощность и притом даже не лошадиная. Мощность – это работа, совершаемая двигателем каждую секунду. Лошадиная сила – мощность двигателя, совершающего ежесекундно 75 килограммометров работы; это значит, что двигатель в 1 лошадиную силу каждую секунду выполняет работу, одинаковую с работой поднятия 1 кг на высоту 75 м (или 75 кг на высоту 1 м). Это ничего не говорит о силе, затрачиваемой двигателем, а лишь о работе, т. е. о произведении силы на пройденный путь.

Может ли лошадь совершать при работе каждую секунду 75 килограммометров работы? В отдельные секунды она способна развить и большую мощность, например, перепрыгивая через препятствие, когда в течение 1–2 секунд поднимает груз своего веса (около 300–400 кг) на высоту метра. Но работать так в течение целого дня и длинного ряда дней, как работает механический двигатель, живая лошадь не может.

Мощность лошади далеко не достигает даже и одной «лошадиной силы».

Откуда же в таком случае взялось название «лошадиная сила», если нет соответствия с энергией лошади? Название это родилось случайно и вот при каких обстоятельствах.

Во времена Уатта, знаменитого изобретателя паровой машины, жил в Англии пивовар, пожелавший поставить у себя машину Уатта для приведения в действие водяного насоса. До той поры насос работал конной тягой, и заводчик поставил Уатту условие, чтобы машина была не менее производительна, чем лошадь. Уатт принял это требование.

Желая сравнить работу машины и лошади, пивовар выбрал самую сильную лошадь и приказал работникам стегать ее не жалея. При таких ненормальных условиях лошадь работала сверх сил и накачала столько воды, что, учитывая глубину, откуда воду брали, мощность лошади надо было оценить в 70 килограммометров.

 

 

Рис. 22. Джемс Уатт, изобретатель паровой машины

 

Уатт знал о хитрости заводчика, но знал также и высокую мощность своей паровой машины. Поэтому он принял преувеличенную оценку пивовара и даже поднял ее до 75 килограммометров. С тех пор и установился обычай считать механическую «лошадиную силу» равной 75 килограммометрам, хотя мощность живой лошади едва достигает 2/3 этой величины.

 

Искуснее Колумба

 

«Христофор Колумб был великий человек, – писал один школьник в своем классном сочинении. – Он открыл Америку и поставил яйцо». Оба подвига казались юному школьнику одинаково достойными изумления. Напротив, американский юморист Марк Твен не видел ничего удивительного в том, что Колумб открыл Америку: «Было бы удивительно, если бы он не нашел ее на месте».

Я осмеливаюсь думать, что не много стоит и второй подвиг великого мореплавателя. Вы знаете, как Колумб поставил яйцо? Попросту придавил его к столу, сломив скорлупу в нижней части. При этом он, разумеется, изменил форму яйца.

 

А как поставить яйцо, не меняя его формы?

 

Этой задачи отважный моряк так и не разрешил.

Между тем она несравненно легче, чем открытие Америки или даже самого крошечного островка. Укажу вам два способа: один – для вареных яиц, другой – для всяких.

Чтобы поставить вареное яйцо, достаточно закружить его пальцами одной руки или между ладонями рук, как кубарь или юла: яйцо завертится стоймя и будет сохранять стоячее положение до тех пор, пока вертится. После двух-трех проб опыт удается довольно легко.

Поставить указанным способом яйцо сырое нельзя: сырые яйца, как вы, вероятно, уже заметили, вертятся плохо. В этом состоит, между прочим, безошибочный способ отличить, не ломая скорлупы, вареное яйцо от сырого. Жидкое содержимое сырого яйца не увлекается в такое же быстрое вращение, как скорлупа, и потому словно тормозит его движение. Приходится искать другой способ ставить яйца. Способ этот существует. Яйцо ставят, например, на край горлышка бутылки и на него помещают пробку с воткнутыми в нее двумя вилками. Вся эта «система» (как выразился бы физик) довольно устойчива и сохраняет равновесие даже при осторожном наклонении бутылки.

 

 

Рис. 23

 

Но почему же пробка и яйцо не падают? По той же причине, почему не падает карандаш, отвесно поставленный на палец, если в него воткнуть перочинный нож: центр тяжести системы лежит ниже точки опоры. Это значит, что та точка, к которой приложен вес «системы», расположена ниже того места, на которое она опирается.

Теперь вас уже не удивит, почему так устойчиво качается в кольце игрушечный попугай и почему не опрокидываются всевозможные «ваньки-встаньки» (рис. 24).

 

 

Рис. 24

 

Движение по кругу

 

Раскройте зонтик, уприте его концом в пол, закружите и бросьте внутрь мячик, скомканную бумагу, носовой платок – вообще что-нибудь легкое и неломкое. Произойдет нечто для вас неожиданное. Зонтик словно не пожелает принять подарка: мяч или бумажный ком выползут вверх, до краев зонтика, а оттуда полетят на пол.

Причину, которая в этом опыте выбросила мяч, принято называть «центробежной силой», хотя правильнее называть ее «инерцией». Она обнаруживается всякий раз, когда тело движется по круговому пути. Это не что иное, как один из случаев проявления инерции – стремления движущегося предмета сохранять направление и скорость своего движения.

 

 

Рис. 25

 

С таким проявлением инерции мы встречаемся гораздо чаще, чем сами подозреваем. Старинное оружие для метания камней – праща – работает по той же причине. Инерция кругового движения разрывает жернов, когда он заверчен слишком быстро и недостаточно прочен. Если вы ловки, она поможет вам выполнить фокус со стаканом, из которого вода не выливается, хотя он опрокинут вверх дном: для этого нужно только быстро взмахнуть стаканом над головой, описав круг. Инерция же помогает велосипедисту в цирке делать головокружительную «чертову петлю». Она же отделяет сливки от молока в так называемых «центробежных» сепараторах; она извлекает мед из сотов в центробежке и т. д.

Когда трамвайный вагон описывает кривую часть пути, например, при повороте из одной улицы в другую, то пассажиры непосредственно на себе ощущают силу, которая прижимает их по направлению к внешней стенке вагона. При достаточной скорости движения весь вагон мог бы быть опрокинут, если бы наружный рельс закругления не был предусмотрительно уложен выше внутреннего: благодаря этому вагон на повороте слегка наклоняется внутрь. Это звучит довольно странно: вагон, покосившийся набок, устойчивее, чем стоящий прямо!

 

 

Рис. 26

 

А между тем это так, и маленький опыт поможет вам уяснить себе, как происходит дело. Сверните картонный лист в виде широкого раструба, еще лучше, – возьмите, если в доме найдется, миску со стенками такой формы. Особенно пригодится для нашей цели конический абажур – стеклянный или жестяной – от электрической лампы. Вооружившись одним из этих предметов, пустите по нему монету, небольшой металлический кружочек или колечко от ключей. Они будут описывать круги по дну посуды, заметно наклоняясь при этом внутрь. По мере того как монета или колечко будут замедлять свое движение, они станут описывать все меньшие круги, приближаясь к центру посуды. Но легким поворотом посуды вы можете заставить монету снова катиться быстрее, и тогда она удаляется от центра, описывая большие круги. Если она разгонится очень сильно, то может и совсем выкатиться из посуды.

Для велосипедных состязаний на так называемом «велодроме» устраиваются особые круговые дорожки; вы можете видеть, что дорожки эти, особенно там, где они круто заворачивают, устроены с заметным уклоном к центру. Велосипед кружится по ним в сильно наклоненном положении, – как монета в вашей чашке, – и не только не опрокидывается, но, напротив, в таком именно положении приобретает особенную устойчивость. В цирках велосипедисты изумляют публику тем, что описывают круги по круто наклоненному настилу; вы понимаете теперь, что в этом нет ничего необычайного. Напротив, трудным искусством для велосипедиста было бы кружиться так по ровной, горизонтальной дорожке.

 

Где легче всего?

 

Земной шар, на котором мы живем, вращается, и вследствие вращения Земли все вещи на ее поверхности становятся легче. Чем ближе к экватору, тем больший круг успевают сделать вещи за 24 часа, тем, значит, они быстрее вращаются и оттого больше теряют в весе. Если килограммовую гирю перенести с полюса на экватор и здесь вновь взвесить на пружинных весах, то обнаружится нехватка в весе на 5 г. Разница невелика, конечно, но чем тяжелее вещь, тем нехватка крупнее. Паровоз, приехавший из Архангельска в Одессу, становится здесь легче на 60 кг – вес взрослого человека. А линейный корабль в 20 тыс. тонн, прибывший из Белого моря в Черное, теряет здесь в весе ни мало, ни много – 80 тонн; это вес хорошего паровоза!

 

 

Рис. 27

 

Отчего так происходит? Оттого, что земной шар, вращаясь, стремится разбросать со своей поверхности все вещи, как зонтик в нашем опыте выкидывает брошенный в него мяч. Земной шар и скинул бы их, но этому мешает то, что он притягивает все вещи к себе. Мы называем это притяжение «тяжестью». Скинуть вещи с Земли вращение не может, а уменьшить вес их может. Вот почему вещи становятся немного легче вследствие вращения земного шара.

 

Если бы Земля вращалась быстрее…

 

Чем быстрее вращение, тем уменьшение веса должно становиться заметнее. Вычислено, что если бы Земля вращалась не так, как теперь, а в 17 раз быстрее, то на экваторе вещи потеряли бы свой вес целиком: они стали бы невесомы. А если бы Земля вращалась еще быстрее, то вещи потеряли бы весь свой вес не только на экваторе, но и в странах и морях, лежащих по обе его стороны.

 

 

Рис. 28

 

Подумайте только, что это значит: вещи потеряли бы свой вес! Ведь это значит, что не будет такой вещи, которой вы не могли бы поднять: паровозы, каменные глыбы, исполинские пушки, целые военные корабли со всеми машинами и орудиями вы поднимали бы – как перышко. А если бы вы их уронили – не опасно: они никого не раздавят. Не раздавят потому, что вовсе и не упали бы: ведь они ничего не весят! Они парили бы в воздухе там, где вы выпустили их из рук. Если бы, сидя в корзине воздушного шара, вы вздумали ронять свои вещи за борт, – они так и остались бы в воздухе. Удивительный был бы это мир! Прыгать вы могли бы так высоко, как и во сне не прыгали: выше самых высоких сооружений и гор. Но только не забывайте: подпрыгнуть легко, а назад спрыгнуть невозможно. Лишенные веса, вы на землю не упадете, а оттолкнуться в воздухе не от чего.

Будут и другие неудобства в этом мире. Сами сообразите, какие: все вещи – и малые и большие, – если они не прикреплены, будут подниматься от малейшего ветерка и носиться в воздухе. Люди, животные, автомобили, телеги, корабли – все беспорядочно металось бы в воздухе, ломая и калеча друг друга… Вот что произошло бы, если бы Земля вращалась значительно быстрее.

 

Сжатие земного шара

 

Вращением Земли объясняется и то, что она, строго говоря, не представляет собой шара, а сплющена по направлению своей оси. Простой опыт уяснит нам, почему Земля приняла такую форму.

 

 

Рис. 29. Почему земной шар раздут у экватора?

 

Вырежьте кружок из плотного и прочного картона, вершков 5–6 в диаметре, и по обе стороны его центра просверлите по дырочке. Сквозь эти дырочки протяните бечевки. Такой кружок легко привести в быстрое вращательное движение; для этого нужно, слегка натянув бечевки, обернуть кружок несколько раз и затем, когда бечевки закрутятся, отпустить его, сильно натянув бечевки: кружок завертится довольно быстро (рис. 29).

Теперь мы можем устроить маленькое подобие земного шара. Проведите на вашем кружке два диаметра под прямым углом. По концам диаметров воткните в кромку картона по игле. Из плотной бумаги приготовьте два кольца шириной в палец и диаметром чуть побольше вашего кружка. Вставьте кольцо одно в другое накрест и склейте места их соприкосновения. Это – «меридианы» вашего земного шара.

Через отверстия в «полюсах» (местах схождения «меридианов») пропустите бечевки от кружка; самый же кружок поместите на месте «экватора», проткнув ленты остриями иголок (рис. 29).

Сделав все это, приведите кружок в быстрое вращение, как было описано выше. Вы увидите, что наш маленький «земной шар» заметно сожмется у «полюсов» и раздуется у «экватора». Подобную же форму имеет и настоящий земной шар: вследствие вращения он немного вздут у экватора.

Описанный сейчас опыт удобнее показывать, если смастерить себе упрощенную центробежную машину, вроде той, которая представлена на рис. 30. Катушка, которую вы вертите рукой, должна иметь больший поперечник, чем та, которая вращает кружок; чем разница в диаметрах больше, тем больше оборотов будет делать бумажное кольцо, и тем опыт выходит показательнее.

 

 

Рис. 30. Самодельная центробежная машина

 

Десять вертушек

 

На рис. 31–33 вы видите всевозможные вертушки, изготовленные на различные лады. Они дадут вам возможность проделать ряд забавных и поучительных опытов. Изготовление их не требует особого искусства.

1. Первую вертушку вы можете сделать из катушки, срезав и обработав один ее бок (первая фигурка, рис. 31). Она будет вертеться не только на заостренном, но и на тупом конце своей оси: для этого нужно закрутить ее, как обычно делается, держа ось между пальцами, а потом проворно уронить юлу на тупой конец – она будет на нем вертеться, забавно раскачиваясь в стороны.

 

 

Рис. 31

 

2. Правее этой юлы вы видите на рис. 31 вертушку, сделанную из розетки для электрического выключателя. Это вертушка номер два.

3. Далее вы видите довольно необычайную юлу – грецкий орех, который вертится на остром выступе. Чтобы превратить подходящий орех в юлу, достаточно только загнать в него с притупленного конца спичку, которую потом и закручивать.

4. Своеобразная вертушка изображена на следующем рисунке (рис. 32): круглая коробочка, проткнутая заостренной спичкой или лучинкой. Чтобы коробочка прочно держалась на оси, не скользя вдоль нее, нужно залить отверстие сургучом.

5. Интересную юлу изображает следующая фигурка на рис. 32. К краям картонного кружка привязаны на ниточках круглые пуговицы. Когда юла вертится, пуговицы отбрасываются вдоль радиусов кружка, натягивая нити.

6. То же, на иной манер, показывает еще одна фигурка. В пробочный кружок воткнуты булавки с нанизанными на них разноцветными бусинками, которые свободно скользят по булавке. При вращении юлы бусинки отгоняются к головкам булавок. Если вращающаяся юла хорошо освещена, то булавочные стержни сливаются в сплошную ленту, которая окаймляется цветным кругом из сливающихся бусин.

Чтобы дольше любоваться этой юлой, нужно пускать ее на гладкой тарелке.

 

 

Рис. 32

 

7. Цветная юла. Изготовить ее более хлопотливо, но она вознаграждает за затраченный труд, обнаруживая удивительные свойства. Выньте донышко из круглой коробочки и проткните его заостренным концом ненужной вставочки, зажав для прочности между двумя пробочными кружочками. Теперь разделите картонный кружок на одинаковые части прямыми линиями, идущими от середины к краям; полученные доли, – математик сказал бы «секторы», – закрасьте попеременно в желтый и синий цвета. Что вы увидите, когда юла завертится? Кружок будет казаться не синим и не желтым, а зеленым. Синий и желтый цвета, сливаясь в нашем глазу, дадут новый цвет – зеленый.

Вы можете продолжить ваши опыты над «смешением цветов». Заготовьте кружок, секторы которого окрашены попеременно в голубой и оранжевый цвета. На этот раз кружок при вращении будет уже не желтый, а светло-серый, тем более светлый, близкий к белому, чем чище ваши краски. В физике такие два цвета, которые при смешении дают белый, называются «дополнительными». Вертушка показала нам, следовательно, что голубой и оранжевый цвета – дополнительные.

Если у вас имеется хороший набор красок, вы можете попытаться повторить опыт, впервые проделанный двести с лишком лет назад знаменитым ученым Ньютоном, а именно: раскрасьте секторы кружка всеми цветами радуги – в фиолетовый, синий, голубой, зеленый, желтый, оранжевый, красный; при вращении все семь цветов должны слиться в серовато-белый цвет. Этот опыт поможет вам понять, что каждый луч белого солнечного света слагается из многих цветных лучей.

8. Пишущая юла (рис. 33). Устройте юлу, как сейчас было рассказано, но только пусть осью ее будет не заостренный обрезок вставочки, а очиненный мягкий карандаш. Заставьте такую юлу вертеться на картонном листе, положенном немного наклонно. Вращаясь, юла будет постепенно спускаться по наклонному картону, рисуя карандашом завитки. Их легко сосчитать, а так как каждый завиток образуется при одном обороте юлы, то, следя за ее вращением с часами в руках[5], нетрудно будет определить, сколько раз оборачивается юла каждую секунду. Просто глазом этого, конечно, сосчитать невозможно.

 

Рис. 33

 

9. Далее на рис. 33, внизу изображен другой вид пишущей юлы. Чтобы ее изготовить, нужно добыть свинцовый кружок из тех, которые подвешиваются к краям штор, чтобы они натягивались. В центре кружка нужно просверлить острием ножниц дырочку (свинец мягок и сверлить его легко), а по обе стороны ее еще по дырочке. Через среднюю дырочку кружок надевают на заостренную палочку, а через одну из боковых дырочек продевают отрезок конского волоса или щетинку так, чтобы они высовывались вниз чуть больше оси юлы: в таком положении волос закрепляют обломком спички. Третья дырочка оставляется неиспользованной; мы просверлили ее для того, чтобы свинцовый кружок по обе стороны оси имел совершенно одинаковый вес, – юла, неравномерно нагруженная, не будет плавно вращаться.

Теперь пишущая юла готова, но для опытов с нею нам нужно заготовить закопченную тарелку. Подержав осторожно донышко тарелки над пламенем свечки, пока поверхность не покроется ровным слоем густой копоти, пускаем юлу по этой закопченной поверхности. Юла будет, вращаясь, скользить по ней, а конский волос тем временем начертит, белым по черному, запутанный, но довольно красивый узор.

10. Венцом наших стараний явится последняя вертушка – юла-карусель. Кружок и осевой стержень здесь такие же, как в знакомой уже нам цветной юле. В кружок втыкают булавочки с флажками, располагая их симметрично около оси, и приклеивают крошечные бумажные лошадки с всадниками: карусель для увеселения вашего младшего брата или сестренки готова.

 

Полет на ракете

 

Без сомнения, большинство из вас видело, как взлетает зажженная ракета. Но знаете ли вы, почему она летит? Обычно причину ее полета представляют себе ошибочно. Думают, что когда в ракете зажжен порох и из нее вытекает струя горячих газов, ракета этой струей отталкивается от окружающего воздуха, как рыба отталкивается хвостом от воды. Если бы было так, то в пустом пространстве ракета лететь не могла бы. На самом же деле причина движения здесь совсем другая: ракета отталкивается не от наружного воздуха, а подталкивается тем газом, который образуется внутри нее. В этом случае происходит то же самое, что и при выстреле из ружья: пороховые газы выбрасывают пулю в одну сторону и в то же время отталкивают ружье в противоположную («отдача» ружья). Окружающий воздух тут не при чем. Напротив, опыт показывает, что в безвоздушном пространстве, где ракета не испытывает сопротивления воздуха, а газы вытекают из нее свободнее, она летит еще быстрее, чем в атмосфере.

 

 

Рис. 34

 

Но если ракета может ускорять свой полет даже в пустоте, то значит, она может и вовсе вылететь из земной атмосферы и направить бег в то безвоздушное пространство, которое окружает нашу планету! Эту мысль первый высказал советский изобретатель К.Э. Циолковский. Он предложил способ путешествовать через безвоздушное пространство, отделяющее Землю от других небесных тел, способ долететь до Луны, до планет. Вот в чем состоит его мысль.

Представьте себе огромных размеров ракету с каютой для пассажиров, находясь в которой люди могут управлять горением заряда, ускорять, замедлять, даже вовсе прекращать горение. Такая ракета может увеличивать свою скорость с плавной постепенностью, безопасной для ее пассажиров. Тем не менее, как показывает математический расчет, скорость ракеты может быть в течение нескольких минут доведена постепенным взрыванием до 12 км в секунду, т. е. именно до такой скорости, с какой может начаться странствование по вселенной.

С этого момента дальнейшее горение может быть прекращено, потому что при указанной скорости ракета по инерции унесется в мировое пространство. И только для изменения ее пути потребуется снова пустить в дело взрывание. Короче сказать, такая ракета есть самый подходящий корабль для будущих межпланетных путешествий.

Вот по какому пути должна идти мысль изобретателей в поисках возможности летать выше атмосферы, посетить Луну, а со временем и другие планеты. И кто знает, не придется ли вам дожить до той поры, когда все это осуществится на самом деле… (Кто желает подробнее узнать о таких перелетах, тот найдет рассказ о них в моей книге «Ракетой на Луну».)

 

 



Поделиться:


Последнее изменение этой страницы: 2016-09-19; просмотров: 185; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.190.239.189 (0.016 с.)