Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Электроизоляционные компаунды

Поиск

Компаунды представляют собой изоляционные составы, которые в момент использования бывают жидкими, а затем отвердевают. Компаунды не имеют в своем составе растворителей. По своему назначению данные составы делятся на пропиточные и заливочные. Первые из них применяют для пропитки обмоток электрических машин и аппаратов, вторые — для заливки полостей в кабельных муфтах, а также в электромашинах и приборах с целью герметизации.

Компаунды бывают термореактивными (не размягчающимися после отвердевания) и термопластичными (размягчающимися при последующих нагревах). К термореактивным можно отнести компаунды на основе эпоксидных, полиэфирных и некоторых других смол. К термопластичным относятся компаунды на основе битумов, воскообразных диэлектриков и термопластичных полимеров (полистирол, полиизобутилен и др.). Пропиточные и заливочные компаунды на основе битумов по нагревостойкости относятся к классу А (105° С), а некоторые к классу Y (до 90° С). Наибольшей нагревостойкостыо обладают компаунды эпоксидные и кремнийорганические.

Лакированные ткани представляют собой гибкие материалы, состоящие из ткани, пропитанной лаком или каким-либо электроизоляционным составом. Пропиточный лак или состав после отвердевания образует гибкую пленку, которая обеспечивает хорошие электроизоляционные свойства лакоткани. В зависимости от тканевой основы лакоткани делятся на хлопчатобумажные, шелковые, капроновые и стеклянные (стеклоткани).

В качестве пропиточных составов для лакотканей применяют масляные, масляно-битумные, эскапоновые и кремнийорганические лаки, а также кремнийорганические эмали, растворы кремнийорганических каучуков и др. Наибольшей растяжимостью и гибкостью обладают шелковые и капроновые лакоткани. Они могут работать при нагреве не выше 105° С (класс А). К этому же классу нагревостойкости относятся все хлопчатобумажные лакоткани.

Слоистые пластмассы — материалы, состоящие из чередующихся слоев листового наполнителя (бумага или ткань) и связующего. Важнейшими из слоистых электроизоляционных пластмасс являются гетинакс, текстолит и стеклотекстолит. Они состоят из листовых наполнителей, располагающихся слоями, а в качестве связующего вещества использованы бакелитовые, эпоксидные, кремнийорганические смолы и их композиции.

В качестве наполнителей применяют специальные сорта пропиточной бумаги (в гетинаксе), хлопчатобумажные ткани (в текстолите) и бесщелочные стеклянные ткани (в стеклотекстолите). Перечисленные наполнители сначала пропитывают бакелитовыми или кремнийорганическими лаками, сушат и режут на листы определенного размера.

Намотанные электроизоляционные изделия представляют собой твердые трубки и цилиндры, изготовленные методом намотки на металлические круглые стержни каких-либо волокнистых материалов, предварительно пропитанных связующим веществом. В качестве волокнистых материалов применяют специальные сорта намоточных или пропиточных бумаг, а также хлопчатобумажные ткани и стеклоткани. Связующими веществами являются бакелитовые, эпоксидные, кремнийорганические и другие смолы.

 

 

 

40. Волокнистые диэлектрики
Волокнистые материалы состоят преимущественно из частиц удлиненной формы – волокон, промежутки между которыми заполнены воздухом у непропитанных материалов и природными или синтетическими смолами у пропитанных.
Достоинства: достаточно большая механическая прочность, гибкость, как правило, хорошо обрабатываются, доступны и дешевы.

Недостатки: малая электрическая прочность из- за воздуха в порах волокон, плохая теплопроводность, гигроскопичность.

Пропитка улучшает свойства волокнистых материалов. Большая часть волокнистых материалов – органические вещества. Это материалы растительного (дерево, хлопчатобумажное волокно, бумага и пр., состоящие в основном из целлюлозы) и животного происхождения (шелк, шерсть), искусственные волокна, получаемые путем химической переработки природного волокнистого сырья и, наконец, приобретающие особо важное значение в последнее время синтетические волокна, изготовляемые из синтетических полимеров (стекловолокно, асбест).
Волокнистые органические электроизоляционные материалы: дерево, бумага, электрокартон, ткани, ленты и т.п.

Дерево является одним из первых электроизоляционных и конструкционных материалов, получивших применение в электротехнике, чему способствовали его дешевизна и легкость механической обработки. Основой дерева является органическое вещество – целлюлоза, которая имеет относительно большие диэлектрическую проницаемость и тангенс угла диэлектрических потерь.

Более тяжелые породы деревьев имеют большую механическую прочность, чем легкие. Прочность поперек волокон у дерева меньше, чем вдоль.

Недостатки: высокая гигроскопичность, нестандартность свойств, низкая нагревостойкость и горючесть. При пропитке дерева льняным маслом или различными смолами свойства улучшаются.

Бумага и картон. Бумага и картон — листовые материалы коротко-волокнистого строения, состоящие из целлюлозы. Бумагу изготовляют из измельченного хлопчатобумажного тряпья и волокон древесины, которые подвергают специальной химической обработке. Все сорта бумаги обладают хорошими изоляционными свойствами, однако в электромашиностроении применяют только следующие специальные сорта: кабельную (толщиной 0,08—0,17 мм), телефонную (0,05 мм), конденсаторную (7—30 мк), оклеечную (0,33 мм), пропиточную (0,12 мм), намоточную (0,05—0,07 мм) и микалентную (20 мк).

Указанные сорта бумаги используют для изоляции обмоточных проводов и кабелей различного типа, изготовления конденсаторов, оклейки листов электротехнической стали, а также для изготовления микаленты (см. ниже) и различных слоистых пластических материалов (листового и фасонного гетинакса, бакелитовых трубок и пр.).

Картон изготовляют из того же сырья, что и бумагу, но он имеет значительно большую толщину. В электромашиностроении применяют следующие сорта картона: электрокартон, фибру и литероид.

Электрокартон имеет толщину от 0,2 до 3 мм и обладает высокими изоляционными свойствами. Диэлектрическая прочность его достигает 25 кВ на 1 мм толщины. Он очень эластичен, что позволяет изгибать его под нужными углами. Применяется для изготовления прокладок, корпусов катушек, шайб, пазовой изоляции электрических машин и пр.

Фибра — картон, обработанный слабыми кислотами. Обладает большой твердостью, прочностью и может подвергаться обработке на металлорежущих станках (сверлильном, токарном, фрезерном и пр.). Изготовляется в виде листов различной толщины или в виде стержней и трубок. Имеет хорошие изоляционные свойства, но повышенную гигроскопичность.

Лакоткани. Лакированные ткани представляют собой гибкие материалы, состоящие из ткани, пропитанной лаком или каким-либо электроизоляционным составом. Пропиточный лак или состав после отвердевания образует гибкую пленку, которая обеспечивает хорошие электроизоляционные свойства лакоткани. В зависимости от тканевой основы лакоткани делятся на хлопчатобумажные, шелковые, капроновые и стеклянные (стеклоткани).

В качестве пропиточных составов для лакотканей применяют масляные, масляно-битумные, эскапоновые и кремнийорганические лаки, а также кремнийорганические эмали, растворы кремнийорганических каучуков и др. Наибольшей растяжимостью и гибкостью обладают шелковые и капроновые лакоткани. Они могут работать при нагреве не выше 105° С (класс А). К этому же классу нагревостойкости относятся все хлопчатобумажные лакоткани.

Основными областями применения лакотканей являются: электрические машины, аппараты и приборы низкого напряжения. Лакоткани используют для гибкой витковой и пазовой изоляции, а также в качестве различных электроизоляционных прокладок.

 

41. Полупроводниковые материалы. Электронно-дырочный переход.
К полупроводникам относятся материалы, свойства которых частично схожи со свойствами проводников, частично со свойствами диэлектриков. К ним относится большое количество веществ с электронной электропроводностью.

Основной особенностью полупроводников является их способность изменять свои свойства под влиянием различных внешних воздействий (изменение температуры, приложение электрического или магнитного полей и т.д.). Свойства полупроводников сильно зависят от содержания примесей. С введением примеси изменяется не только значение проводимости, но и характер её температурной зависимости.

Электрический ток в полупроводниках связан с дрейфом носителей заряда. Появление носителей заряда в полупроводниках определяется химической частотой и температурой.

Среди полупроводниковых материалов электронные полупроводники, полупроводниковые химические соединения и твердые растворы. Электрические свойства полупроводников определяются зонной структурой и содержанием примесей.

При любой температуре, отличной от абсолютного нуля, в полупроводнике за счет теплового возбуждения происходит генерация свободных электронов и дырок. Однако с процессом генерации обязательно протекает обратный процесс – рекомбинации носителей заряда. Основной характеристикой рекомбинации является время жизни.

Основным материалов полупроводниковой электроники является кремний. Для изготовления полупроводниковых приборов и устройств микроэлектроники используют как монокристаллические, так и поликристаллические материалы

Собственные полупроводники имеют кристаллическую структуру, характеризующуюся периодическим расположением атомов в узлах пространственной кристаллической решетки. В такой решетке каждый атом взаимно связан с четырьмя соседними атомами ковалентными связями, в результате которых происходит обобществление валентных электронов и образование устойчивых электронных оболочек, состоящих из восьми электронов. При температуре абсолютного нуля (T=0° K) все валентные электроны находятся в ковалентных связях, следовательно, свободные носители заряда отсутствуют, и полупроводник подобен диэлектрику. При повышении температуры или при облучении полупроводника лучистой энергией валентный электрон может выйти из ковалентной связи и стать свободным носителем электрического заряда. При этом ковалентная связь становится дефектной, в ней образуется свободное (вакантное) место, которое может занять один из валентных электронов соседней связи, в результате чего вакантное место переместится к другой паре атомов. Перемещение вакантного места внутри кристаллической решетки можно рассматривать как перемещение некоторого фиктивного (виртуального) положительного заряда, величина которого равна заряду электрона. Такой положительный заряд принято называть дыркой.

Процесс возникновения свободных электронов и дырок, обусловленный разрывом ковалентных связей, называется тепловой генерацией носителей заряда. Его характеризуют скоростью генерации G, определяющей количество пар носителей заряда, возникающих в единицу времени в единице объема. Скорость генерации тем больше, чем выше температура и чем меньше энергия, затрачиваемая на разрыв ковалентных связей. Возникшие в результате генерации электроны и дырки, находясь в состоянии хаотического теплового движения, спустя некоторое время, среднее значение которого называется временем жизни носителей заряда, встречаются друг с другом, в результате чего происходит восстановление ковалентных связей. Этот процесс называется рекомбинацией носителей заряда и характеризуется скоростью рекомбинации R, которая определяет количество пар носителей заряда, исчезающих в единицу времени в единице объема. Произведение скорости генерации на время жизни носителей заряда определяет их концентрацию, то есть количество электронов и дырок в единице объема. При неизменной температуре генерационно- рекомбинационные процессы находятся в динамическом равновесии, то есть в единицу времени рождается и исчезает одинаковое количество носителей заряда (R=G). Это условие называется законом равновесия масс.

Состояние полупроводника, когда R=G, называется равновесным; в этом состоянии в собственном полупроводнике устанавливаются равновесные концентрации электронов и дырок, обозначаемые ni и pi. Поскольку электроны и дырки генерируются парами, то выполняется условие: ni=pi. При этом полупроводник остается электрически нейтральным, т.к. суммарный отрицательный заряд электронов компенсируется суммарным положительным зарядом дырок. Это условие называется законом нейтральности заряда

Электронный полупроводник

Электронным полупроводником или полупроводником типа n (от латинского negative - отрицательный) называется полупроводник, в кристаллической решетке которого помимо основных (четырехвалент-ных) атомов содержатся примесные пятивалентные атомы, называемые донорами. В такой кристаллической решетке четыре валентных электрона примесного атома заняты в ковалентных связях, а пятый (“лишний”) электрон не может вступить в нормальную ковалентную связь и легко отделяется от примесного атома, становясь свободным носителем заряда. При этом примесный атом превращается в положительный ион. При комнатной температуре практически все примесные атомы оказываются ионизированными. Наряду с ионизацией примесных атомов в электронном полупроводнике происходит тепловая генерация, в результате которой образуются свободные электроны и дырки, однако концентрация возникающих в результате генерации электронов и дырок значительно меньше концентрации свободных электронов, образующихся при ионизации примесных атомов, т.к. энергия, необходимая для разрыва ковалентных связей, существенно больше энергии, затрачиваемой на ионизацию примесных атомов.Концентрация электронов в электронном полупроводнике обозначается nn, а концентрация дырок - pn. Электроны в этом случае являются основными носителями заряда, а дырки - неосновными.

Дырочный полупроводник

Дырочным полупроводником или полупроводником типа p (от латинского positive - положительный) называется полупроводник, в кристаллической решетке которого содержатся примесные трехвалентные атомы, называемые акцепторами. В такой кристаллической решетке одна из ковалентных связей остается незаполненной. Свободную связь примесного атома может заполнить электрон, покинувший одну из соседних связей. При этом примесный атом превращается в отрицательный ион, а на том месте, откуда ушел электрон, возникает дырка.

В дырочном полупроводнике, также как и в электронном, происходит тепловая генерация носителей заряда, но их концентрация во много раз меньше концентрации дырок, образующихся в результате ионизации акцепторов. Концентрация дырок в дырочном полупроводнике обозначается pp, они являются основными носителями заряда, а концентрация электронов обозначается np, они являются неосновными носителями заряда.



Поделиться:


Последнее изменение этой страницы: 2016-09-19; просмотров: 710; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.137.176.213 (0.01 с.)