Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Собственное свечение клеток и тканей животных↑ ⇐ ПредыдущаяСтр 6 из 6 Содержание книги
Поиск на нашем сайте
В настоящее время слабое свечение удается изучать и на целых органах в составе организма. На рисунке 9. изображен аппаратурный комплекс, применяемый для измерения собственного свечения тканей животного, например, печени или легкого.
Наиболее важные части комплекса - это совершенно непроницаемый для света ящик, в который помещают лабораторное животное, например крысу, и высокочувствительный приемник света - фотоумножитель, соединенный через усилитель и другие промежуточные устройства с самопишущим потенциометром или же персональным компьютером. Аналогичную конструкцию используют для изучения свечения изолированных органов, например, перфузируемого легкого или сердца. Добавляя в перфузионную жидкость ингибиторы или активаторы определенных реакций, можно судить о природе химических реакций, сопровождающихся свечением. За собственное свечение тканей могут быть ответственны реакции: 1. Реакции активных форм кислорода и активных форм азота. 2. Реакции цепного (перекисного) окисления липидов.
Реакции с участием активных форм кислорода и азота
Активными формами кислорода (АФК) обычно называют пероксидь водорода (H2O2), гипохлорит (ClO-) и кислородные радикалы: супероксид (O2·-) и радикал гидроксила (HO ·). Активными формами азота (АФА) являются монооксид азота (· NO), различные формы пероксинитрита (HOONO, ONOO-, ONOOCO2-). Главным источником АФК и АФА в организме человека и животных служат клетки-фагоциты: гранулоциты и моноциты крови и тканевые макрофаги. Активированные фагоциты для борьбы с чужеродными клетками образуют целый букет активных форм кислорода и азота, которые, как оказалось, могут взаимодействовать друг с другом и с другими молекулами с испусканием квантов хемилюминесценции. Непосредственной причиной такого свечения считают образование синглетного кислорода (1O2), испускается квант света с длиной волны 1270 нм, и его возбужденного димера, испускается квант света с длинами волн 635, 580, 535 нм. Пероксинитрит взаимодействуя с остатками триптофана и тирозина белков, переводит их в электронно-возбужденное состояние. При переходе молекул в основное состояние испускается квант света в видимой области.
Свечение при реакциях цепного окисления липидов Одна из главных составляющих собственной (неактивированной) хемилюминесценции животных клеток и тканей - свечение, сопровождающее цепное окисление липидов в мембранных структурах клеток и липопротеинах крови. Эта реакция идет с участием свободных радикалов липидов L ·и липопероксидов LOO ·, которые как бы "ведут" цепи окисления В реакции взаимодействия двух радикалов липопероксида (LOO ·) образуются молекулы кетона и кислорода в электронно-возбужденном состоянии, которые затем переходят в основное состояние, испуская квант света. Чем больше радикалов LOO · в системе, то есть чем энергичнее идут цепные реакции окисления липидов, тем выше интенсивность хемилюминесценции, сопровождающей реакцию радикалов. Вещества, реагирующие со свободными радикалами и тем самым тормозящие цепное окисление липидов (так называемые антиоксиданты), одновременно подавляют хемилюминесценцию. Изучая влияние различных природных и синтетических соединений на характеристики хемилюминесценции, можно судить о способности этих веществ защищать наш организм от вредного действия свободных радикалов и тем самым отбирать кандидатов на определенные лекарства.
Активированная хемилюминесценция Собственная хемилюминесценция, сопровождающая биохимические реакции в клетках и тканях, обладает, как правило, очень низкой интенсивностью. Существует несколько причин низкого квантового выхода хемилюминесценции. 1. Концентрация радикалов в биологических системах очень мала из-за их высокой химической активности, поэтому малы и скорости реакций, сопровождающихся свечением. 2. Не любое химическое взаимодействие радикалов приводит к образованию электронно-возбужденных молекул продуктов реакции. В подавляющем большинстве окислительно-восстановительных взаимодействий между молекулами или радикалами электрон переносится не на уровень возбужденного состояния, а на самый нижний свободный уровень, и последующего высвечивания кванта не происходит. 3. Даже если и образовалась возбужденная молекула продукта, вероятность того, что высветится квант, а не произойдет растраты энергии в тепло, тоже обычно очень мала. Две последние причины приводят к тому, что квантовый выход хемилюминесценции в случае, скажем, реакции двух перекисных радикалов составляет всего 10-8-10-10. Квантовый выход образования возбужденных молекул продукта:
а квантовый выход люминесценции продукта:
для кетонов. Таким образом, общий квантовый выход хемилюминесценции равен 10-8-10-10. Для усиления свечения надо увеличить QХЛ или QВОЗБ или QЛЮМ или и то и другое. Соединения, которые реагируют с радикалами с образованием возбужденных молекул продуктов, такие как люминол или люцигенин, называют химическими активаторами хемилюминесценции, или хемилюминогенными зондами. Они увеличивают QВОЗБ. Существуют и такие вещества, которые перехватывают возбужденные состояния продуктов и высвечивают кванты с высоким выходом (т. е. увеличивают QЛЮМ). Их называют физическими активаторамихемилюминесценции. Химические активаторы ХЛ - это соединения, вступающие в реакции с активными формами кислорода или органическими свободными радикалами, в ходе которых образуются молекулы продуктов в возбужденном электронном состоянии. Активатор + радикалы ® продукт* ® продукт + фотон Известными активаторами хемилюминесценции являются люминол и люцигенин. Физические активаторы не вступают в химические реакции и не влияют на ход реакций, сопровождающихся свечением, но тем не менее многократно усиливают интенсивность хемилюминесценции. В основе их действия лежит физический процесс процесса переноса (миграции) энергии с молекулы продукта хемилюминесцентной реакции на активатор: Радикалы ® продукт* ® продукт + фотон 1 (неактивированная ХЛ) Продукт* + активатор ® продукт + активатор* ® фотон 2 (активированная ХЛ) К физическим активаторам можно отнести некоторые красители и комплексы редкоземельных элементов. Примеры. У больных инфарктом миокарда в моче могут появиться очень небольшие количества миоглобина. Гем-содержащие соединения, к которым относится миоглобин, дают очень яркое свечение в присутствии перекиси водорода и люминола в сильно щелочной среде. Свечение мочи в этих условиях может служить одним из показателей инфаркта у больного. На поверхности свежей раны выделяется жидкость, называемая раневым экссудатом. В ней содержится каталаза - фермент, разлагающий перекись водорода без образования свободных радикалов. Наряду с этим жидкость содержит другие гем-содержащие белки и ионы железа, которые катализируют разложение перекиси водорода с образованием свободных радикалов кислорода, токсичных для клеток окружающей ткани. При добавлении к раневому экссудату перекиси водорода с люминолом наблюдается хемилюминесценция, тем более сильная, чем больше радикалов образуется при разложении перекиси. Таким образом, хемилюминесценция показывает, сколько токсичных радикалов образуется в экссудате. В свежей ране таких радикалов много, а по мере заживления их становится все меньше и меньшее. Ускорение заживления ран за счет применения лекарственных средств или облучения светом лазера сопровождается соответственным снижением хемилюминесценции экссудата. Таким образом, этот метод позволяет врачу контролировать эффективность лечения и вносить коррективы в сроки и дозы применения лечебных процедур.
Биолюминесценция
Биолюминесценция - это свечение живых организмов, видимое простым глазом. Способностью к биолюминесценции обладают организмы, принадлежащие к самым разным систематическим группам: бактериям, грибам, моллюскам, насекомым. Механизм реакций, сопровождающихся свечением, весьма различен у разных видов; однако обычно включает в себя химическое превращение определенного низкомолекулярного субстрата, называемого люциферином, катализируемое ферментом, называемым люциферазой. Измерение биолюминесценции бактерий можно использовать для определения низких концентраций кислорода. Дело в том, что в отсутствие кислорода фотобактерии не характеризуются свечением, свечение усиливается пропорционально концентрации кислорода в среде в интервале концентраций О2 от 2•10-8 до 5•10-6 моль/л. Можно использовать светящиеся бактерии и в качестве "лабораторного животного", т. е. живых организмов, на которых изучают, к примеру, действие различных токсических веществ. Светящиеся бактерии весьма чувствительны к примесям токсических веществ в воде, и измерение биолюминесценции можно использовать для оценки загрязнения воды токсическими соединениями, скажем ионами тяжелых металлов. Свечение бактерий можно использовать для предварительной оценки эффективности новых антибиотиков.
|
||||||
Последнее изменение этой страницы: 2016-09-13; просмотров: 276; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.118.184.91 (0.008 с.) |