Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Ненасыщенного вакуумного диода.

Поиск

Цель работы: Экспериментальное определение отношения заряда электрона к его массе по вольт-амперной характеристике ненасыщенного вакуумного диода.

Введение

 

Вольт-амперной характеристикой (ВАХ) вакуумного диода называют зависимость анодного тока от напряжения между анодом и катодом диода. Различают три участка вольт-амперной характеристики. Первый участок соответствует малому изменению анодного тока и может находиться при отрицательном и положительном значениях анодного напряжения. Этот участок расположен на ВАХ от I=0 до ее прямолинейной части. Второй прямолинейный участок вольт-амперной характеристики показывает ее зависимость I=f(U) до насыщения анодного тока. Третий участок соответствует насыщению анодного тока.

В настоящей работе в качестве рабочей используется область пространственного заряда ВАХ, который, образуясь вблизи катода, уменьшает анодный ток, так как электрическое поле пространственного заряда препятствует движению электронов к аноду и часть из них возвращает обратно на катод, т. е. анодный ток меньше тока эмиссии. Как показывает опыт, зависимость анодного тока от напряжения на диоде в области пространственного заряда подчиняется «закону трех вторых» Ленгмюра:

 

,

где b — коэффициент пропорциональности, зависящий от материала катода, его формы, а также от удельного заряда электрона. Следовательно, измерив зависимость анодного тока диода от напряжения на его аноде в области пространственного заряда, можно определить удельный заряд электрона.

Получим выражение для коэффициента пропорциональности в «законе трех вторых». Для этого рассмотрим движение электронов в вакуумном диоде типа 2Ц2С, применяемом в данной работе. Электроды этой лампы представляют собой коаксиальные (соосные) цилиндры. Меньший электрод радиусом rk, являющийся катодом, вложен во второй электрод радиусом ra, являющийся анодом. Между анодом и катодом создается разность потенциалов U. Потенциал катода считаем равным нулю. Пренебрегая краевыми эффектами, связанными с конечной длиной катода, флуктуациями напряжения и пространственного заряда, будем считать электрическое поле между анодом и катодом цилиндрически симметричным и независящим от времени (стационарным). В плоскости, перпендикулярной оси цилиндрического анода, введем полярную систему координат с полюсом на оси цилиндра. Расстояние от полюса обозначим через r (см.рисунок). Распределение потенциалов в пространстве между анодом и катодом вакуумного диода описывается уравнением Пуассона, которое в системе СИ записывается так:

где U — потенциал, r(r) — объемная плотность электрического заряда.

Выразим плотность заряда через ток диода I. Для этого вырежем двумя сечениями перпендикулярно оси z слой толщиной i. В этом случае ток, протекающий через этот слой, для выбранной системы координат равен:

 

где u(r) —скорость электронов на расстоянии r от катода.

Пренебрегая скоростью вылета электронов из катода, выразим скорость электронов u(r) через пройденную ими разность потенциалов:

 

 

Тогда выражение для тока принимает следующий вид:

Учитывая выполненные преобразования, уравнение Пуассона можно записать так:

где l — длина катода; е и m соответственно заряд и масса электрона,

e0 =8,85/10-12 Ф / м.

Полученное дифференциальное уравнение может быть решено, если заданы граничные условия и, кроме того, потенциал анода удовлетворяет следующему условию:

Поскольку производная du/dr равна напряженности электрического поля, это условие означает, что вблизи катода пространственный заряд электронов полностью компенсирует поле анода.

В этом случае, как показывает расчет, решение уравнения Пуассона, удовлетворяющее поставленным условиям, можно записать в виде:

где ra — радиус анода; b — коэффициент, зависящий от соотношения значений радиуса анода ra и радиуса катода rk. Для данного типа лампы, как показывает расчет, b2 =0,98

Как видно из полученного выражения, представляющего собой «закон трех вторых» для коаксиальных цилиндрических электродов, можно определить удельный заряд электрона.

 



Поделиться:


Последнее изменение этой страницы: 2016-09-13; просмотров: 268; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.15.214.244 (0.005 с.)