Структура функционирования сети 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Структура функционирования сети



 

Современные сети построены по многоуровневому принципу. Чтобы организовать связь двух компьютеров, требуется сначала создать свод правил их взаимодействия, определить язык их общения, т.е. определить, что означают посылаемые ими сигналы и т.д. Эти правила и определения называются протоколом. Для работы сетей необходимо запастись множеством различных протоколов: например, управляющих физической связью, установлением связи по сети, доступом к различным ресурсам и т.д. Многоуровневая структура спроектирована с целью упростить и упорядочить это великое множество протоколов и отношений. Взаимодействие уровней в этой модели - субординарное. Каждый уровень может реально взаимодействовать только с соседними уровнями (верхним и нижним), виртуально - только с аналогичным уровнем на другом конце линии.

Под реальным взаимодействием мы подразумеваем непосредственное взаимодействие, непосредственную передачу информации, например, пересылку данных в оперативной памяти из области, отведенной одной программе, в область другой программы. При непосредственной передаче данные остаются неизменными все время. Под виртуальным взаимодействием мы понимаем опосредованное взаимодействие и передачу данных; здесь данные в процессе передачи могут уже определенным, заранее оговоренным образом видоизменяться.

Такое взаимодействие аналогично схеме цепи посылки письма одним директором фирмы другому. Например, директор некоторой фирмы пишет письмо редактору газеты. Директор пишет письмо на своем фирменном бланке и отдает этот листок секретарю. Секретарь запечатывает листок в конверт, надписывает конверт, наклеивает марку и передает почте. Почта доставляет письмо в соответствующее почтовое отделение. Это почтовое отделение связи непосредственно доставляет письмо получателю - секретарю редактора газеты. Секретарь распечатывает конверт и, по мере надобности, подает редактору. Ни одно из звеньев цепи не может быть пропущено, иначе цепь разорвется: если отсутствует, например, секретарь, то листок с письменами директора так и будет пылиться на столе у секретаря.

Здесь мы видим, как информация (лист бумаги с текстом) передается с верхнего уровня вниз, проходя множество необходимых ступеней - стадий обработки. Обрастает служебной информацией (пакет, адрес на конверте, почтовый индекс; контейнер с корреспонденцией; почтовый вагон, станция назначения почтового вагона и т.д.), изменяется на каждой стадии обработки и постепенно доходит до самого нижнего уровня - уровня почтового транспорта (гужевого, автомобильного, железнодорожного, воздушного,...), которым реально перевозится в пункт назначения. В пункте назначения происходит обратный процесс: вскрывается контейнер и извлекается корреспонденция, считывается адрес на конверте и почтальон несет его адресату (секретарю), который восстанавливает информацию в первоначальном виде, - достает письмо из конверта, прочитывает его и определяет его срочность, важность, и в зависимости от этого передает информацию выше. Директор и редактор, таким образом, виртуально имеют прямую связь. Ведь редактор газеты получает в точности ту же информацию, которую отправил директор, а именно - лист бумаги с текстом письма. Начальствующие персоны совершенно не заботятся о проблемах пересылки этой информации. Секретари также имеют виртуально прямую связь: секретарь редактора получит в точности то же, что отправил секретарь директора, а именно - конверт с письмом. Секретарей совершенно не волнуют проблемы почты, пересылающей письма. И так далее.

Аналогичные связи и процессы имеют место и в эталонной модели ISO OSI. Физическая связь реально имеет место только на самом нижнем уровне (аналог почтовых поездов, самолетов, автомобилей). Горизонтальные связи между всеми остальными уровнями являются виртуальными, реально они осуществляются передачей информации сначала вниз, последовательно до самого нижнего уровня, где происходит реальная передача, а потом, на другом конце, обратная передача вверх последовательно до соответствующего уровня.

Модель ISO OSI предписывает очень сильную стандартизацию вертикальных межуровневых взаимодействий. Такая стандартизация гарантирует совместимость продуктов, работающих по стандарту какого-либо уровня, с продуктами, работающими по стандартам соседних уровней, даже в том случае, если они выпущены разными производителями. Количество уровней может показаться избыточным, однако же, такое разбиение необходимо для достаточно четкого разделения требуемых функций во избежание излишней сложности и создания структуры, которая может подстраиваться под нужды конкретного пользователя, оставаясь в рамках стандарта.

 

=====================================================================

Комьпьютер А Компьютер В

 

+----------------+ Application protocol +------------------+

| Application | _ _ _ _ _ _ _ _ _ | Application |

| layer | | layer |

+----------------+ Уровень 7 -прикладной +------------------+

| |

| |

+----------------+ Presentation protocol +----------------+

| Presentation | _ _ _ _ _ _ _ _ _ | Presentation |

|. layer | | layer. |

+---.------------+ Уровень 6 -представления +-----------.----+

. | данных |.

. | |.

. | |.

+---.------------+ Session protocol +-----------.----+

| Presentation | _ _ _ _ _ _ _ _ _ | Presentation |

|. layer | | layer. |

+---.------------+ Уровень 5 -сеансовый +-----------.----+

. | |.

. | |.

+---.------------+ Transport protocol +-----------.----+

| Transport | _ _ _ _ _ _ _ _ _ | Transport |

|. layer | | layer. |

+---.------------+ Уровень 4 -транспортный +-----------.----+

. | |.

. | |.

+---.------------+ Network protocol +-----------.----+

| Network | _ _ _ _ _ _ _ _ _ | Network. |

|. layer | | layer. |

+---.------------+ Уровень 3 -сетевой +-----------.----+

. | |.

. | |.

+---.------------+ Data link protocol +-----------.----+

| Data Link | _ _ _ _ _ _ _ _ _ | Data Link |

|. layer | | layer. |

+---.------------+ Уровень 2 -канальный +-----------.----+

. | |.

. | |.

+---.------------+ Physical protocol +-----------.----+

| Physical | _ _ _ _ _ _ _ _ _ | Physical. |

|. layer | | layer. |

+---.------------+ Уровень 1 -физический +-----------.----+

. | |.

. | ********************** |.

. | * Physical media * |.

. | * -физическая среда * |.

.. |......*..........*...... |..

|___________*____________________*_____________|

**********************

 

 

_ _ _ _ _ Виртуальные соединения

..... Путь данных, соответствующий связи на уровне 6

_________ Физическое реальное соединение

|

| Интерфейс (иерархическое взаимодействие уровней)

 

=====================================================================

 

 

Рисунок: Эталонная модель ISO OSI

 

Дадим краткий обзор уровней.

 

Уровень 0

связан с физической средой - передатчиком сигнала и на самом деле не включается в эту схему, но весьма полезен для понимания. Этот почетный уровень представляет посредников, соединяющих конечные устройства: кабели, радиолинии и т.д. Кабелей существует великое множество различных видов и типов: экранированные и неэкранированные витые пары, коаксиальные, на основе оптических волокон и т.д. Т.к. этот уровень не включен в схему, он ничего и не описывает, только указывает на среду.

 

Уровень 1

- физический. Включает физические аспекты передачи двоичной информации по линии связи. Детально описывает, например, напряжения, частоты, природу передающей среды. Этому уровню вменяется в обязанность поддержание связи и прием-передача битового потока. Безошибочность желательна, но не требуется.

 

Уровень 2

- канальный. Связь данных. Обеспечивает безошибочную передачу блоков данных (называемых кадрами (frame)) через уровень 1, который при передаче может искажать данные. Этот уровень должен определять начало и конец кадра в битовом потоке, формировать из данных, передаваемых физическим уровнем, кадры или последовательности, включать процедуру проверки наличия ошибок и их исправления. Этот уровень (и только он) оперирует такими элементами, как битовые последовательности, методы кодирования, маркеры. Он несет ответственность за правильную передачу данных (пакетов) на участках между непосредственно связанными элементами сети. Обеспечивает управление доступом к среде передачи. В виду его сложности, канальный уровень подразделяется на два подуровня: MAC (Medium Access Control) - Управление доступом к среде и LLC (Logical Link Control) - Управление логической связью (каналом). Уровень MAC управляет доступом к сети (с передачей маркера в сетях Token Ring или распознаванием конфликтов (столкновений передач) в сетях Ethernet) и управлением сетью. Уровень LLC, действующий над уровнем MAC, и есть собственно тот уровень, который посылает и получает сообщения с данными.

 

Уровень 3

- сетевой. Этот уровень пользуется возможностями, предоставляемыми ему уровнем 2, для обеспечения связи двух любых точек в сети. Любых, необязательно смежных. Этот уровень осуществляет проводку сообщений по сети, которая может иметь много линий связи, или по множеству совместно работающих сетей, что требует маршрутизации, т.е. определения пути, по которому следует пересылать данные. Маршрутизация производится на этом же уровне. Выполняет обработку адресов, а также и демультиплексирование.

Основной функцией программного обеспечения на этом уровне является выборка информации из источника, преобразование ее в пакеты и правильная передача в точку назначения.

Есть два принципиально различных способа работы сетевого уровня. Первый - это метод виртуальных каналов. Он состоит в том, что канал связи устанавливается при вызове (начале сеанса (session) связи), по нему передается информация, и по окончании передачи канал закрывается (уничтожается). Передача пакетов происходит с сохранением исходной последовательности, даже если пакеты пересылаются по различным физическим маршрутам, т.е. виртуальный канал динамически перенаправляется. При этом пакеты данных не включают адрес пункта назначения, т.к. он определяется во время установления связи.

Второй - метод дейтаграмм. Дейтаграммы - независимые, они включают всю необходимую для их пересылки информацию. В то время, как первый метод предоставляет следующему уровню (уровню 4) надежный канал передачи данных, свободный от искажений (ошибок) и правильно доставляющий пакеты в пункт назначения, второй метод требует от следующего уровня работы над ошибками и проверки доставки нужному адресату.

 

Уровень 4

- транспортный. Регламентирует пересылку пакетов сообщений между процессами, выполняемыми на компьютерах сети. Завершает организацию передачи данных: контролирует на сквозной основе поток данных, проходящий по маршруту, определенному третьим уровнем: правильность передачи блоков данных, правильность доставки в нужный пункт назначения, их комплектность, сохранность, порядок следования. Собирает информацию из блоков в ее прежний вид. Или же оперирует с дейтаграммами, т.е. ожидает отклика-подтверждения приема из пункта назначения, проверяет правильность доставки и адресации, повторяет посылку дейтаграммы, если не пришел отклик. В рамках транспортного протокола предусмотрено пять классов качества транспортировки и соответствующие процедуры управления. Этот же уровень должен включать развитую и надежную схему адресации для обеспечения связи через множество сетей и шлюзов. Другими словами, задачей данного уровня является довести до ума передачу информации из любой точки в любую во всей сети.

Транспортный уровень скрывает от всех высших уровней любые детали и проблемы передачи данных, обеспечивает стандартное взаимодействие лежащего над ним уровня с приемом-передачей информации независимо от конкретной технической реализации этой передачи.

 

Уровень 5

- сеансовый. Координирует взаимодействие связывающихся пользователей: устанавливает их связь, оперирует с ней, восстанавливает аварийно оконченные сеансы. Этот же уровень ответственен за картографию сети - он преобразовывает региональные (доменные) компьютерные имена в числовые адреса, и наоборот. Он координирует не компьютеры и устройства, а процессы в сети, поддерживает их взаимодействие - управляет сеансами связи между процессами прикладного уровня.

 

Уровень 6

- уровень представления данных. Этот уровень имеет дело с синтаксисом и семантикой передаваемой информации, т.е. здесь устанавливается взаимопонимание двух сообщающихся компьютеров относительно того, как они представляют и понимают по получении передаваемую информацию. Здесь решаются, например, такие задачи, как перекодировка текстовой информации и изображений, сжатие и распаковка, поддержка сетевых файловых систем (NFS), абстрактных структур данных и т.д.

 

Уровень 7

- прикладной. Обеспечивает интерфейс между пользователем и сетью, делает доступными для человека всевозможные услуги. На этом уровне реализуется, по крайней мере, пять прикладных служб: передача файлов, удаленный терминальный доступ, электронная передача сообщений, служба справочника и управление сетью. В конкретной реализации определяется пользователем (программистом) согласно его насущным нуждам и возможностям его кошелька, интеллекта и фантазии. Имеет дело, например, с множеством различных протоколов терминального типа, которых существует более ста.

Замечание.

 

Следует понимать, что подавляющее большинство современных сетей в силу исторических причин лишь в общих чертах, приближенно, соответствуют эталонной модели ISO OSI.


 

Уровни работы сети

 

Пересылка битов

Пересылка битов происходит на физическом уровне схемы ISO OSI. Увы, здесь всякая попытка краткого и доступного описания обречена на провал. Требуется введение огромного количества специальных терминов, понятий, описаний процессов на физическом уровне и т.д. И потом, существует столь великое разнообразие приемопередатчиков и передающих сред, - трудно даже и обозреть этот океан технологий. Для понимания работы сетей этого и не требуется. Считайте, что просто имеется труба, по которой из конца в конец перекачиваются биты. Именно биты, безо всякого деления на какие-либо группы (байты, декады и т.п.).

Пересылка данных

Об организации блочной, символьной передачи, обеспечении надежности пересылки поговорим на других уровнях модели ISO OSI. Т.е. функции канального уровня в Internet распределены по другим уровням, но не выше транспортного. В этом смысле Internet не совсем соответствует стандарту ISO. Здесь канальный уровень занимается только разбиением битового потока на символы и кадры и передачей полученных данных на следующий уровень. Обеспечением надежности передачи он себя не утруждает.

Сети коммутации пакетов

Настала пора поговорить об Internet именно как о сети, а не паутине линий связи и множестве приемопередатчиков. Казалось бы, Internet вполне аналогична телефонной сети, и модель телефонной сети достаточно адекватно отражает ее структуру и работу. В самом деле, обе они электронные, обе позволяют вам устанавливать связь и передавать информацию. И Internet тоже состоит, в первую очередь, из выделенных телефонных линий. Но увы! Картина эта неверна и приводит ко многим заблуждениям относительно работы Internet, ко множеству недоразумений. Телефонная сеть - это так называемая сеть с коммутацией линий, т.е. когда вы делаете вызов, устанавливается связь и на все время сеанса связи имеется физическое соединение с абонентом. При этом вам выделяется часть сети, которая для других уже не доступна, даже если вы молча дышите в трубку, а другие абоненты хотели бы поговорить по действительно неотложному делу. Это приводит к нерациональному использованию очень дорогих ресурсов - линий сети. Internet же является сетью с коммутацией пакетов, что принципиально отличается от сети с коммутацией каналов.

Для Internet более подходит модель, которая поначалу может не внушать доверия: почта, обыкновенная государственная почтовая служба. Почта является сетью пакетной связи. Нет никакой выделенной вам части этой сети. Ваше послание перемешивается с посланиями других пользователей, кидается в контейнер, пересылается в другое почтовое отделение, где снова сортируется. Хотя технологии сильно разнятся, почта является прекрасным и наглядным примером сети с коммутацией пакетов. Модель почты удивительно точно отражает суть работы и структуры Internet. Ею мы и будем пользоваться далее.

Протокол Internet (IP)

 

По проводу можно переслать биты только из одного его конца в другой. Internet же умудряется аккуратно передавать данные в различные точки, разбросанные по всему миру. Как она это делает? Забота об этом возложена на сетевой (межсетевой) уровень в эталонной модели ISO OSI. О нем и поговорим.

Различные части Internet - составляющие сети - соединяются между собой посредством компьютеров, которые называются ``узлы''; так Сеть связывается воедино. Сети эти могут быть Ethernet, Token Ring, сети на телефонных линиях, пакетные радиосети и т.п. Выделенные линии и локальные сети суть аналоги железных дорог, самолетов почты и почтовых отделений, почтальонов. Посредством их почта движется с места на место. Узлы - аналоги почтовых отделений, где принимается решение, как перемещать данные (``пакеты'') по сети, точно так же, как почтовый узел намечает дальнейший путь почтового конверта. Отделения или узлы не имеют прямых связей со всеми остальными. Если вы отправляете конверт из Долгопрудного (Московская область) в Уфу (Башкирия), конечно же, почта не станет нанимать самолет, который полетит из ближайшего к Долгопрудному аэропорта (Шереметьево) в Уфу, просто местное почтовое отделение отправляет послание на подстанцию в нужном направлении, та в свою очередь, дальше в направлении пункта назначения на следующую подстанцию; таким образом письмо станет последовательно приближаться к пункту назначения, пока не достигнет почтового отделения, в ведении которого находится нужный объект и которое доставит сообщение получателю. Для работы такой системы требуется, чтобы каждая подстанция знала о наличествующих связях и о том, на какую из ближайших подстанций оптимально следует передать адресованный туда-то пакет. Примерно также и в Internet: узлы выясняют, куда следует ваш пакет данных, решают куда его дальше отправить и отправляют.

На каждой почтовой подстанции определяется следующая подстанция, куда будет далее направлена корреспонденция, т.е. намечается дальнейший путь (маршрут) - этот процесс называется маршрутизацией. Для осуществления маршрутизации каждая подстанция имеет таблицу, где адресу пункта назначения (или индексу) соответствует указание почтовой подстанции, куда следует посылать далее этот конверт (бандероль). Их сетевые аналоги называются таблицами маршрутизации. Эти таблицы рассылаются почтовым подстанциям централизовано соответствующим почтовым подразделением. Время от времени рассылаются предписания по изменению и дополнению этих таблиц. В Internet, как и любые другие действия, составление и модификация, таблиц маршрутизации (этот процесс тоже является частью маршрутизации и называется так же) определяются соответствующими правилами - протоколами ICMP (Internet Control Message Protocol), RIP (Routing Internet Protocol) и OSPF (Open Shortest Path First). Узлы, занимающиеся маршрутизацией, называются маршрутизаторами.

А откуда сеть знает, куда назначен ваш пакет данных? От вас. Если вы хотите отправить письмо и хотите, чтобы ваше письмо достигло места назначения, вы не можете просто кинуть листочек бумаги в ящик. Вам следует уложить его в стандартный конверт и написать на нем не ``на деревню дедушке'', как Ванька Жуков, а адрес получателя в стандартной форме. Только тогда почта сможет правильно обработать ваше письмо и доставить его по назначению. Аналогично в Internet имеется набор правил по обращению с пакетами - протоколы. Протокол Internet (IP) берет на себя заботы по адресации или по подтверждению того, что узлы понимают, что следует делать с вашими данными по пути их дальнейшего следования. Согласно нашей аналогии, протокол Internet работает также как правила обработки почтового конверта. В начало каждого вашего послания помещается заголовок, несущий информацию об адресате, сети. Чтобы определить, куда и как доставить пакет данных, этой информации достаточно.

Адрес в Internet состоит из 4 байт. При записи байты отделяются друг от друга точками: 123.45.67.89 или 3.33.33.3. (Не пугайтесь, запоминать эти цифры вам не придется!) В действительности адрес состоит из нескольких частей. Так как Internet есть сеть сетей, начало адреса говорит узлам Internet, частью какой из сетей вы являетесь. Правый конец адреса говорит этой сети, какой компьютер или хост должен получить пакет (хотя реально не все так просто, но идея такова). Каждый компьютер в Internet имеет в этой схеме уникальный адрес, аналогично обычному почтовому адресу, а еще точнее - индексу. Обработка пакета согласно адресу также аналогична. Почтовая служба знает, где находится указанное в адресе почтовое отделение, а почтовое отделение подробно знает подопечный район. Internet знает, где искать указанную сеть, а эта сеть знает, где в ней находится конкретный компьютер. Для определения, где в локальной сети находится компьютер с данным числовым IP-адресом, локальные сети используют свои собственные протоколы сетевого уровня. Например, Ethernet для отыскания Ethernet-адреса по IP-адресу компьютера, находящегося в данной сети, использует протокол ARP - протокол разрешения(в смысле различения) адресов. (См. документацию по ARP: RFC 826, 917, 925, 1027)

Числовой адрес компьютера в Internet аналогичен почтовому индексу отделения связи. Первые цифры индекса говорят о регионе (например, 45 - это Башкирия, 141 - подмосковье и т.д.), последние две цифры - номер почтового отделения в городе, области или районе. Промежуточные цифры могут относиться как к региону, так и к отделению, в зависимости от территориального деления и вида населенного пункта. Аналогично существует несколько типов адресов Internet (типы: A, B, C, D, E), которые по-разному делят адрес на поля номера сети и номера узла, от типа такого деления зависит количество возможных различных сетей и машин в таких сетях.

По ряду причин (особенно, - практических, из-за ограничений оборудования) информация, пересылаемая по сетям IP, делится на части (по границам байтов), раскладываемые в отдельные пакеты. Длина информации внутри пакета обычно составляет от 1 до 1500 байт. Это защищает сеть от монополизирования каким-либо пользователем и предоставляет всем примерно равные права. Поэтому же, если сеть недостаточно быстра, чем больше пользователей ее одновременно пользует, тем медленнее она будет общаться с каждым.

Протокол IP является дейтаграммным протоколом, т.е. IP-пакет является дейтаграммой. Это совершенно не укладывается в модель ISO OSI, в рамках которой уже сетевой уровень способен работать по методу виртуальных каналов.

Одно из достоинств Internet состоит в том, что протокола IP самого по себе уже вполне достаточно для работы (в принципе). Это совершенно неудобно, но, при достаточных аскетичности, уме и упорстве удастся проделать немалый объем работы. Как только данные помещаются в оболочку IP, сеть имеет всю необходимую информацию для передачи их с исходного компьютера получателю. Работа вручную с протоколом IP напоминает нам суровые времена доперсональной компьютерной эры, когда пользователь всячески угождал ЭВМ, укрощая свои тело, дух и эстетические чувства. Об удобстве пользователя никто и не собирался думать, потому что машинное время стоило во много раз дороже человеческого. Но сейчас в аскетизме надобности уже нет. Поэтому следует построить на основе услуг, предоставляемых IP, более совершенную и удобную систему. Для этого сначала следует разобраться с некоторыми жизненно важными проблемами, которые имеют место при пересылке информации:

· большая часть пересылаемой информации длиннее 1500 символов. если бы почта пересылала только почтовые карточки и отказывалась бы от пересылки чего-либо большего, мы бы, например, лишились увлекательнейшего литературного жанра - эпистолярного. Не говоря уже о том, что практической пользы от такой почты было бы очень немного;

· возможны и неудачи. Почта, нередко бывает, письма теряет; сеть тоже, бывает, теряет пакеты или искажает в пути информацию в них. В отличие от почты, Internet может с честью выходить из таких затруднительных положений;

· пакеты могут приходить в последовательности, отличной от начальной. Пара писем, отправленных друг за другом на днях, не всегда приходит к получателю в том же порядке; то же верно и для Internet.

Таким образом, следующий уровень Internet должен обеспечить способ пересылки больших массивов информации и позаботиться об ``искажениях'', которые могут возникать по вине сети.



Поделиться:


Последнее изменение этой страницы: 2016-09-13; просмотров: 304; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.90.33.254 (0.06 с.)