![]() Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву ![]() Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Основные классы эффективностиСодержание книги Поиск на нашем сайте
В теории анализа эффективности алгоритмов к одному классу относят все функции, чей порядок роста одинаков с точностью до постоянного множителя. Рассмотрим их более подробно.
Для примера приведем числа, иллюстрирующие скорость роста для нескольких функций, которые часто используются при оценке временной сложности алгоритмов (см. Таблица 1). Таблица 1
Порядок чисел, приведенных в таблице, имеет чрезвычайное значение для анализа алгоритмов. Как видно из таблицы, самый малый порядок роста имеет логарифмическая функция. Причем его значение настолько мало, что программы, реализующие алгоритмы с логарифмическим количеством основных операций, будут выполняться практически мгновенно для всех диапазонов входных данных реального размера, причем вне зависимости от основания логарифма, так как переход от одного основания к другому есть константа: log a n = loga b log b n. Поэтому далее будем опускать основание логарифма, то есть log n. Если считать, что числа соответствуют микросекундам, то для задачи с 1048476 элементами алгоритму со временем работы T (log n) потребуется 20 микросекунд, а алгоритму со временем работы T (n 2) – более 12 дней. Существует и другая крайность: показательная функция 2n и функция n! – вычисление факториала. Обе эти функции имеют настолько высокий порядок роста, что его значение становится астрономически большим уже при умеренных значениях n. Например, чтобы выполнить 2100 операций компьютеру, имеющему производительность в один триллион операций в секунду, понадобиться без малого 4 • 1010 лет! Однако это ничто по сравнению со временем, которое затратит тот же компьютер на выполнение 100! операций. Подводя итог, отметим: c помощью алгоритмов, в которых количество выполняемых операций растет по экспоненциальному закону, можно решить лишь задачи очень малых размеров. Именно для этого и следует на практике оценивать трудоемкость разрабатываемого алгоритма.
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Последнее изменение этой страницы: 2016-09-05; просмотров: 264; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.145.73.202 (0.007 с.) |