Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Необходимые сведения из теории.Содержание книги Поиск на нашем сайте
Средняя величина - это обобщающий показатель, который характеризует качественно однородную совокупность по определенному количественному признаку. Например, средний возраст лиц, осужденных за кражу. Средние величины бывают простые и взвешенные. Взвешенными средними называют величины, которые учитывают, что некоторые варианты значений признака могут иметь различную численность, в связи, с чем каждый вариант приходится умножать на соответствующую численность. Иными словами, «весами» выступают числа единиц совокупности в разных группах, т.е. каждый вариант «взвешивают» по своей частоте. Частоту называют статистическим весом. Средняя арифметическая простая – самый распространенный вид средней. Она равна сумме отдельных значений признака, деленной на общее число этих значений: , где x1,x2, …,xN – индивидуальные значения варьирующего признака (варианты), а N – число единиц совокупности. Средняя арифметическая взвешенная применяется в тех случаях, когда данные представлены в виде рядов распределения или группировок. Она вычисляется как сумма произведений вариантов на соответствующие им частоты, деленная на сумму частот всех вариантов: , где xi – значение i–й варианты признака; fi – частота i–й варианты. Таким образом, каждое значение варианты взвешивается по своей частоте, поэтому частоты иногда называют статистическими весами. Замечание. Если вычисление средней величины производят по данным, сгруппированным в виде интервальных рядов распределения, то сначала надо определить серединные значения каждого интервала х'i, после чего рассчитать среднюю величину по формуле средней арифметической взвешенной, где вместо xi используется х'i. Вариация – это различия в значениях какого-либо признака у разных единиц данной совокупности в один и тот же период или момент времени. Она возникает в результате того, что индивидуальные значения признака складываются под совокупным влиянием разнообразных факторов (условий), которые по-разному сочетаются в каждом отдельном случае. Показатели вариации используются для установления типичности средней величины, т. е. насколько точно характеризует средняя данную совокупность по определенному признаку. К основным показателям вариации относятся следующие: 1) дисперсия; 2) среднее квадратическое отклонение; 3) коэффициент вариации. Дисперсия определяется как средняя из отклонений, возведенных в квадрат. Простая дисперсия для не сгруппированных данных: . Взвешенная дисперсия для вариационного ряда: Замечание. На практике для вычисления дисперсии лучше использовать следующие формулы: Для простой дисперсии . Для взвешенной дисперсии
Среднее квадратическое отклонение - это корень квадратный из дисперсии: Среднее квадратическое отклонение является мерилом надежности средней. Чем меньше среднее квадратическое отклонение, тем, однороднее совокупность и тем лучше средняя арифметическая отражает собой всю совокупность. Коэффициент вариации – выраженное в процентах отношение среднего квадратического отклонения к средней арифметической: Коэффициент вариации используют не только для сравнительной оценки вариации разных признаков или одного и того же признака в различных совокупностях, но и для характеристики однородности совокупности. Статистическая совокупность считается количественно однородной, если коэффициент вариации не превышает 33 % (для распределений, близких к нормальному распределению). Порядок работы
1 Открыть новый файл в приложении MS Excel и сохранить файл, указав в имени файла свою фамилию. Создать в Excel таблицу 5 и добавить к ней справа 4 столбца: «Дисперсия срока лишения свободы», «Медиана срока лишения свободы», «Мода срока лишения свободы», «Среднее квадратическое отклонение» и «Коэффициент вариации».
Формула исчисления медианы для интервального вариационного ряда имеет следующий вид: Ме = ХМе + iМе * (∑f/2 - SМе-1)/fМе, Где ХМе - начальное значение медианного интервала; iМе - величина медианного интервала; ∑f - сумма частот ряда (численность ряда); SМе-1 - сумма накопленных частот в интервалах, предшествующих медианному; fМе - частота медианного интервала.
Для расчета определенного значения модальной величины признака, заключенного в интервале, применяют формулу: Мо = ХМо + iМо *(fМо - fМо-1)/((fМо - fМо-1) + (fМо - fМо+1)), Где ХМо - минимальная граница модального интервала; iМо - величина модального интервала; fМо - частота модального интервала; fМо-1 - частота интервала, предшествующего модальному; fМо+1 - частота интервала, следующего за модальным.
10. Сделайте вывод об однородности статистических совокупностей, используя полученные значения коэффициента вариации. 11. Постройте диаграмму с графиками, отражающими распределение числа осужденных за преступления различной степени тяжести по срокам лишения свободы. 12. Исключите из расчетов число осужденных, которым были назначены в итоговом наказании сроки лишения свободы, превышающие верхний предел по тяжести, предусмотренный ст. 15 УК РФ (в редакции, соответствующей 2008 году). Произведите в дополнительных столбцах пересчет рассчитанных средних значений и показателей вариации, Сравните полученные результаты. Задание для компьютерного практикума по теме «Ряды динамики». Цель: Освоить расчет показателей динамики, научиться строить графики динамики судимости и линии тренда, строить прогноз. Задачи: 1. Произвести расчеты показателей динамики, используя средства приложения MS Office табличного процессора Excel. 2. Построить график динамики судимости и провести выравнивание ряда динамики с помощью скользящей средней. 3. Построить линию тренда и сделать прогноз на год вперед. Исходные статистические данные. Таблица 6.
За 2011 г. данные с учетом военных судов
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Последнее изменение этой страницы: 2016-08-26; просмотров: 422; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.226.93.138 (0.011 с.) |