Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Расчет единовременных тарифных ставок на случай смерти

Поиск

 

Методические указания

Фактическая стоимость обязательств страхователя равна по величине единовременной премии по страхованию на случай смерти:

, (24)

 

где S - страховая сумма на случай смерти, руб.

nАх - единовременная нетто-ставка по страхованию на случай смерти лица в возрасте x лет на срок n лет.

Эта фактическая стоимость равна современной вероятной стоимости обязательств страхователя, поскольку он уплачивает единовременную премию, безусловно, и в момент заключения договора страхования.

Рассмотрим обязательства страховщика.

Страховщик обязуется выплатить страховую сумму S в случае смерти застрахованного в течение срока страхования. Поскольку для каждого года страхования имеется определенная вероятность смерти, а, следовательно, и вероятность выплаты, то общая современная вероятная стоимость выплаты будет равна сумме ее современных вероятных стоимостей за каждый год.

Рассмотрим первый год после заключения договора страхования. Вероятность выплаты в течение первого года страхования равна вероятности смерти лица при переходе от возраста x лет к возрасту (х+1) год, т.е. qx.

По таблице смертности вероятность смерти при переходе от возраста x лет к возрасту (х+1) год рассчитывается по формуле:

, (25)

где dx - показатель числа умирающих при переходе от возраста x к возрасту

(х + 1) год,

Lx - показатель таблицы смертности, характеризующий число доживающих до возраста x лет.

Вероятная стоимость выплаты (ее математическое ожидание) для первого года равна произведению страховой суммы S на вероятность выплаты qx, т.е.:

(26)

Чтобы получить современную вероятную стоимость выплаты на первом году страхования, необходимо вероятную стоимость умножить на дисконтирующий коэффициент. При этом для простоты будем полагать, что все выплаты происходят в конце года, поэтому используют дисконтирующий коэффициент за один год V1. Таким образом, современная вероятная стоимость выплаты в течение первого года страхования равна:

(27)

Вероятность выплаты в течение второго года равна вероятности того, что застрахованный доживет до второго года страхования, т. е. до возраста (х+1) год и умрет в течение этого года, т. е. при переходе от возраста (х+1) к возрасту (х+2) года. Таким образом, вероятность выплаты в течение второго года равна произведению вероятности 1Px дожития лица в возрасте x лет до возраста (x+1) год на вероятность qx+1 смерти при переходе к возрасту (х+2) года. По таблице смертности эта вероятность может быть рассчитана как:

(28)

Таким образом, вероятная стоимость выплаты на втором году страхования, равная произведению страховой суммы S на вероятность выплаты в этом году, составит:

(29)

Используя принятую ранее гипотезу о том, что все выплаты происходят в конце года, можно найти современную вероятную стоимость выплаты для второго года страхования, которая будет равна:

(30)

Аналогичным образом определяется современная вероятная стоимость выплаты для всех последующих лет страхования.

Общая современная стоимость обязательств страховщика, равная сумме вероятных стоимостей выплат за весь срок страхования, составит:

Теперь мы можем применить принцип равновесия и записать равенство современных вероятных стоимостей обязательств страхователя и страховщика:

Отсюда получаем общую формулу для расчета единовременной нетто-ставки по страхованию на случай смерти:

(31)

Используя рассмотренный алгоритм, можно найти формулы для расчета нетто-ставок практически по любому договору страхования жизни. При этом необходимо учитывать, что если договор включает различные виды гарантий, то общая нетто-ставка по такому договору будет равна сумме нетто-ставок по всем видам гарантий. Например, нетто-ставка по договору смешанного страхования жизни, предусматривающего выплату страховой суммы при дожитии застрахованного до конца срока страхования или в случае его смерти в течение этого срока, будет равна сумме нетто-ставки на дожитие nЕx и нетто-ставки на случай смерти nАх:

(32)

где nАх - единовременная нетто-ставка по страхованию на случай смерти в возрасте x лет сроком на n лет;

dx - число лиц, умирающих в возрасте x лет;

dx+1 - число лиц, умирающих в возрасте х+1 лет;

- число лиц, умирающих на последнем году страховани;

V, V2, Vn - дисконтирующие множители для соответствующих лет страхования;

lx - число лиц в начале страхования.

Задание 2.3.1 Рассчитайте единовременную нетто-ставку на случай смерти

Исходные данные: Лица в возрасте 40 лет заключают договора сроком на 5 лет на сумму 100 тыс. руб. Норма доходности - 5%.

Решение:

Для расчета единовременных нетто-ставок по страхованию на случай смерти определим число лиц, которые не могут дожить до 45 лет.

Из таблицы смертности находим, что в возрасте 40 лет обычно умирает 722 человека, 41 года – 767; 42 – 817; 43 – 872; 44 – 931.

Подставляя данные по смертности и дисконтирующие множители в формулу:

находим единовременную нетто-ставку по страхованию на случай смерти: 0,03996

 

Медицинское страхование

 

Задание 2.4.1 Рассчитать годовой страховой взнос промышленного предприятия на медицинское страхование сотрудников.

Исходные данные:

Страховая компания заключила договор с промышленным предприятием на добровольное групповое медицинское страхование 300 работников.

Средняя стоимость обслуживания в поликлиниках, с которыми медицинская страховая компания имеет договор, составляет 1,5 тыс. руб. в год, вероятность госпитализации равна 25 %, средняя стоимость лечения одного больного в стационарах, с которыми страховая компания имеет договор, составляет 6,5 тыс. руб. Накладные расходы медицинской страховой компании на ведение дел в расчете на одного застрахованного составляют в среднем 25 тыс. руб., планируемая прибыль компании равна 20 %.

Решение:

Определим нетто-ставку на одного застрахованного при условии, что в расчете на одного человека: на амбулаторную помощь затрачивается 1,5 тыс. руб., а на лечение в стационаре при вероятности госпитализации равной 25 %, - 1,625 тыс.руб. (6,5 тыс. руб. - полная стоимость стационарного лечения одного больного): (6,5Í25%)/100 = 1,625 тыс. руб.

Нетто-ставка равна стоимости всего медицинского обслуживания 1,5 тыс. руб. + 1,625 тыс. руб. = 3,125 тыс. руб.

Рассчитаем нагрузку, при условии, что накладные расходы
медицинской страховой компании на одного застрахованного равны 25 тыс. руб.

Себестоимость страхования для страховой компании включает: стоимость медицинской помощи и накладные расходы

3,125тыс. руб. + 25 тыс. руб. = 28,125 тыс. руб.

Прибыль - 20% от себестоимости - составит 5,625 тыс. руб. (28,125Í20%/100).

Нагрузка с учетом прибыли будет равна 30,625 тыс. руб.

(25 + 5,625).

Рассчитаем брутто-ставку на одного застрахованного

(брутто-ставка= нетто-ставка + нагрузка)

3,125 тыс. руб. + 30,625 тыс. руб. = 33,75 тыс. руб.

Определим взнос на 300 застрахованных: 10125,0 тыс. руб. (33,75 тыс. руб.Í300).

 

Задания для самостоятельного решения



Поделиться:


Последнее изменение этой страницы: 2016-09-05; просмотров: 338; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.227.46.202 (0.006 с.)