Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Пт и его регуляция имеют огромное медицинское значение, так как нарушения параметров пт вызывают серьезные патологические состояния организма.Содержание книги
Поиск на нашем сайте
Так, тетродотоксин, ядовитое вещество иглобрюха (рыбы фугу) и некоторых тритонов, обладает высоким сродством к потенциалзависимым Na-каналам, входит в них и, закрывая просвет, блокирует их активность. В результате этого использование в пищу рыбы фугу, если она не приготовлена особым способом, приводит к блоку возникновения и проведения нервных импульсов, заканчивающихся летальным исходом. Эффект ряда местных анестетиков обусловлен их способностью блокировать эти же каналы сходным с тетродотоксином образом. Растительные алкалоиды курарины (действующее начало яда кураре, которым индейцы смазывали наконечники стрел) связываются с Na/K-каналом постсинаптической мембраны мышечных клеток, инактивируют его и вызывают блок нейромышечной передачи импульса. При попадании кураринов в кровь (ранение стрелой) человек погибает от паралича мышц. Аналогичным способом действует и бунгаротоксин, белок обнаруженный в яде змей семейства кобр. Яд паука каракурта содержит латротоксин, который встраивается в билипидный слой плазмалеммы и формирует нерегулируемый кальциевый канал. Если латротоксин поражает нейроны, поток ионов Са2+ индуцирует мощный выброс нейромедиаторов в синаптическую щель, вызывающий сильное возбуждение на постсинаптической мембране. При этом пресинаптический нейрон теряет активность из-за дефицита нейромедиаторов, секретируемых им в огромном количестве под действием латротоксина. После укуса каракуртом у человека развиваются судороги (результат сильного возбуждения), затем - параличи (результат нейромедиаторного истощения нейронов). Характерным симптомом действия латротоксина являются и галлюцинации (возникновение ощущений и образов без адекватных им раздражителей). Латротоксин относится к веществам, способным к ПТ ионов, - ионофорам. Включение ионофоров в плазмалемму клетки изменяет ее ионный баланс, что, в свою очередь, вызывает гибель клетки. Именно на этом основано действие некоторых антибиотиков - антибактериальных препаратов, используемых в медицине. Так, антибиотиком-ионофором является циклический пептид валиномицин. Встраиваясь в бактериальную мембрану, он транспортирует по градиенту ионы К+, двигаясь в мембране, как челнок. Исчезновение градиента К+ является губительным для клеток бактерий.
Аналогичным способом действует антибиотик грамицидин. Две молекулы грамицидина встраиваются друг за другом в мембрану бактерий и формируют неподвижный канал, через который пассивно проходят ионы К+. При использовании таких антибиотиков лля лечения бактериальных инфекций следует помнить, что они способны встраиваться во внутреннюю мембрану митохондрий и формировать протонные каналы, т.e. пассивно транспортировать катионы водорода и тем самым нарушать работу этих органоидов. Активный транспорт (AT) это движение молекул и ионов против градиента концентрации (в биологическом понимании градиента) и, с этой точки зрения, он противоположен свободному и пассивному транспорту. Как и пассивный транспорт, AT осуществляется с помощью белков-переносчиков, которые в данном случае называют активными переносчиками, насосами или помпами. В соответствии с законами диффузии, AT не может происходить спонтанно, самопроизвольно. Благодаря этому осуществление AT требует затрат энергии. По виду используемой энергии, различают 2 вида AT: первичный AT и вторичный АТ. Первичный AT характеризуется тем, что активные переносчики, или насосы, используют энергию АТФ непосредственно. С биохимической точки зрения, такие _насосы являются АТФазами, т.е. имеют каталитический домен, в котором происходит присоединение и расщепление АТФ. В ходе связывания, гидролиза и удаления продуктов расщепления АТФ активный переносчик циклически изменяет свою конформацию, что и позволяет ему транспортировать молекулы или ионы против градиента концентрации. Вторичный AT основан на том, что переносчик использует не энергию гидролиза АТФ, а энергию градиента других молекул (ионов), которые он способен транспортировать пассивно, по градиенту концентрации. Пассивный транспорт вызывает изменение конформации такого переносчика, которое и обеспечивает AT другого типа молекул. Так как создание соответствующих градиентов сопряженно с гидролизом АТФ другими насосами, AT за счет энергии градиентов является вторичным по отношению к AT путем прямого гидролиза АТФ, т.е. первичному AT. AT, как и пассивный, характеризуется высокой специфичностью в отношении транспортируемых молекул. Это определяется наличием в переносчике центров связывания определенных молекул или ионов. Как и пассивные переносчики, насосы представляют србой белковые канальные структуры, функционирующие за счет изменения своей конформации.
Наличие насосов в плазмалемме позволяет клетке создавать и поддерживать электрохимические градиенты молекул или ионов по обе ее стороны. Эта функция определяет зависимость работы активных переносчиков от градиента - скорость транспорта снижается по мере создания определенной величины градиента, при которой функционирование насоса прекращается. Некоторые насосы-АТФазы в условиях превышения этой величины способны работать как пассивные переносчики, снижая значение градиента до необходимых параметров. При этом в условиях эксперимента пассивный транспорт через насос превращает АТФазу в АТФ-синтазу - переносчик начинает катализировать не гидролиз АТФ, а его синтез Создание градиента ионов приводит к поляризации плазмалеммы, формированию потенциала покоя, что необходимо для функционирования нейронов и мышечных клеток. Благодаря этому данные клетки обладают свойством возбудимости, способностью к формированию потенциала действия за счет пассивного транспорта ионов по фадиенту, созданному с помощью насосов. Кроме того, пассивный поток ионов используется рядом клеток для осуществления вторичного AT молекул, необходимых для жизнедеятельности клеток (моносахариды и аминокислоты). Наконец, AT необходим и используется клеткой с целью вывода опасных для нее химических соединений. Примером универсального для всех эукариот первичного активного переносчика плазмалеммы является Са-насос, или Са-АТФаза. Он транспортирует ионы Са2+ из периферической гиалоплазмы за пределы клетки, расщепляя при этом молекулы АТФ. Структурная основа Са2+-насоса - крупный полипептид (1220 аминокислотных остатков) с несколькими альфа-спиральными трансмембранными доменами и сложным цитоплазматическим доменом, локализованным в периферической гиалоилазме. Собственно Са-насос функционирует в виде гомодимера, состоящего из двух таких полипептидов. Цитоплазматический домен насоса содержит 4 разных центра: Са2+-связывающий (транспортный), АТФазный (каталитический), кальмодулинсвязывающий (регуляторный) и фосфорилируемый (регуляторный). При достижении определенного уровня Са2+ в периферической гиалоплазме ионы связываются транспортным центром насоса и изменяют его конформацию. Это приводит к активации каталитического центра - он связывает и гидролизует АТФ. Действие каталитического (АТФазного) центра, в свою очередь, вызывает изменение конформации насоса, благодаря чему Са2+, связанный в гиалоплазме, выводится во внеклеточную среду. В таком режиме работы осуществляется транспорт одного иона Са24 на одну молекулу АТФ со скоростью 1000 циклов/мин. Эта скорость может увеличиваться при активации протеинкиназы А, которая фосфорилирует цитоплазматический домен насоса и стимулирует этим его работу Данный вариант фосфорилирования является обратимым - насос может дефосфорилироваться с помощью протеинфосфатазы, что приводит к снижению скорости его работы. Если концентрация Са2+ в периферической гиалоплазме достаточно велика, происходит усиление активности насоса. В этом случае Са2+ связывается не только насосом, но и регуляторньш белком кальмодулином, с образованием активного комплекса Са-калъмодулин. Данный комплекс присоединяется к соответствующему регуляторному центру цитоплазматического домена насоса и изменяет его конформацию.
Взаимодействие Са2+-кальмодулина с насосом резко (в 20 раз) увеличивает сродство транспортного центра к ионам Са2+ и активность каталитического, АТФазного, центра в 2 раза. В результате этого скорость AT Ca2+ достигает 2000 ионов/мин и клетка избегает кальциевой перегрузки. В некоторых случаях концентрация Са2+ периферической гиалоплазмы может стать очень высокой. В такой ситуации возникает реальная угроза гибели клетки из-за интенсификации Са2+-зависимых процессов (например, деполимеризации микротрубочек) или образования нерастворимых солей, в частности, фосфата кальция. Для предотвращения такой угрозы в клетке существует фермент кальпаин, который активируется ионами Са2+ при их высокой концентрации. По своей функции, кальпаин является протеинкиназой, с помощью которой фосфорилируется цитоплазматический домен Са-насоса и существенно интенсифицируется его работа. Фосфорилирование кальпаином представляет собой необратимый процесс, приводящий к потере насосом способности регулироваться. Однако оно вызывает необратимое и резкое усиление активности насоса (скорости вывода ионов Са2+ из клетки), которое позволяет за короткое время нормализовать концентрацию Са в периферической гиалоплазме и предотвратить неблагоприятные последствия кальциевой перегрузки. Кроме Са2+-насоса, плазмалемма зукариотических клеток содержит насосы и с другой ионной специфичностью, например, протонный насос, или H+ -АТФазу. С медицинской точки зрения, интересен активный переносчик (АТФаза) гликопротеин Р. У человека (и других млекопитающих) он обнаружен в клетках почек, надпочечников, печени и кишечника. Функцией этого насоса является вывод из клетки вредных, токсичных для нее химических соединений, к каковым относятся и определенные лекарственные препараты. Гликопротеин Р - крупный гликозилированный полипептид с двенадцатью альфа-спиральными трансмембранными доменами, формирующими канальную структуру, и двумя сходными по структуре и функциям цитоплазматическими доменами с центрами связывания и гидролиза АТФ (АТФазными центрами) В тканях, содержащих клетки с гликопротеином Р, нередко возникают опухоли, которые очень плохо поддаются лечению химическими препаратами, т.е. обладающие устойчивостью одновременно к широкому спектру цитостатиков (препаратов, прекращающих рост опухолей). В этих случаях раковые клетки содержат необычно большое количество молекул гликонротеина Р в плазмалемме. Благодаря этому цитостатики, попавшие в опухолевые клетки, очень быстро выводятся из них, не успев оказать терапевтического действия.
Одной из причин такой лекарственной устойчивости раковых клеток может быть амплификация (увеличение числа копий) гена, кодирующего структуру гликопротеина Р в опухолевых клетках. Такая возможность продемонстрирована экспериментально при изучении механизмов лекарственной устойчивости некоторых опухолевых клеток у мышей. Возникнув в одной раковой клетке, амплицированный ген передается другим опухолевым клеткам, образующимся из исходной путем ее деления при росте опухоли. В результате этого лекарственную устойчивость приобретают многие клетки данной опухоли, что делает ее не чувствительной к цитостатикам. Транспорт (как пассивный, так и активный), при котором переносчик функционирует только в отношении молекул или ионов одного вида, получил название унипорт. Кроме унипорта, существует сопряженный транспорт, или копорт, при котором переносчик способен транспортировать одновременно более одного вида молекул (ионов). Такие переносчики называют сопряженными переносчиками, или копортерами. Различают 2 варианта копорта: симпорт и антипорт. При симпорте различные молекулы (ионы) транспортируются переносчиком в одном направлении, а при антипорте направления транспорта разных молекул (ионов) являются противоположными. При этом механизм транспорта молекул (ионов) разного вида может не совпадать, т.е. для одного вида он может быть пассивным, а для другого - активным. С этой точки зрения, вторичный AT относится к категории копорта в варианте симпорта. Примером такого вида транспорта является реабсорбция (обратное всасывание) глюкозы и аминокислот из первичной мочи, осуществляемое нефроцитами (клетками почечных канальцев). Этот процесс предотвращает потери организмом ценных для него органических соединений, в результате чего вторичная моча, выводящаяся из организма, в норме практически не содержит глюкозы и аминокислот. Глюкоза реабсорбируется с помощью переносчиков, локализованных в плазмалемме нефроцитов. Эти сопряженные переносчики способны к пассивному транспорту ионов Na+, который сопровождается переносом глюкозы в том же направлении, что и ионов Na+. Таким образом, для транспорта глюкозы симпортный переносчик использует энергию градиента Na. В первичной моче концентрация Na всегда выше, чем в цитоплазме клеток эпителия почечных канальцев, что обеспечивается работой активных переносчиков Na+ в этих же клетках. Глюкоза, попавшая в первичную мочу при фильтрации плазмы крови в почечных клубочках, связывается соответствующим симпортером (его наружным доменом). Взаимодействие с молекулой глюкозы активирует Na-канал этого переносчика, в результате чего происходит пассивный транспорт ионов через этот канал.
Поток ионов Na+ обеспечивает изменение конформации сопряженного переносчика и транспорт глюкозы в том же направлении, что и Na+. При этом глюкоза транспортируется всегда в клетки почечных канальцев вне зависимости от ее относительных концентраций в первичной моче и цитоплазме клеток канальцев, т.е. может транспортироваться активно, против градиента собственной концентрации. Именно это позволяет реаб-сорбировать практически всю глюкозу из первичной мочи, снижая пищевую потребность в этом моносахариде. Аналогичные натриевые симпортеры глюкозы и аминокислот функционируют в клетках тонкой кишки, где они обеспечивают максимальное всасывание этих веществ, образовавшихся в процессе пищеварения. Кроме симпортного вторичного AT глюкозы, в клетках осуществляется и пассивный унипорт этого моносахарида с помощью переносчиков семейства GluT. Реабсорбция глюкозы в почках имеет важное физиологическое значение, предотвращая развитие гипогликемии (пониженного уровня глюкозы в крови). При снижении концентрации глюкозы в крови до 0,2 мг/мл у человека развиваются гипогликемические судороги. Если в такой ситуации не ввести глюкозу, тяжелая гипогликемия может привести к летальному исходу. С другой стороны, система обратного транспорта глюкозы в почечных канальцах функционирует таким образом, что препятствует развитию гипергликемии, вызывающей симптомы сахарного диабета. Скорость реабсорбции глюкозы в почках имеет предельную величину порядка 350 мг/мин. Благодаря этому избыток глюкозы в первичной моче не реабсорбируется, а выводится с вторичной мочой. Наличие глюкозы во вторичной моче, глюкозурия, является следствием гипергликемии и служит диагностическим признаком сахарного диабета. Глюкозурия может транзитно наблюдаться и у здоровых людей, если концентрация глюкозы в венозной крови достигает 2 мг/мл. Этот уровень обозначают как почечный порог для глюкозы. Причиной глюкозурии может быть не только гипергликемия, но и нарушения реабсорбции глюкозы. В частности, ее вторичный AT в почечных канальцах может быть подавлен некоторыми химическими веществами, например, флоридзином. Известны и наследственные нарушения реабсорбции глюкозы, врожденная глюкозурия. При этом заболевании человек является предрасположенным к гипогликемии из-за хронической потери глюкозы, выводящейся с вторичной мочой. Соответственно, такие больные должны получать с пищей достаточное количество углеводов для предотвращения развития гипогликемии. Аналогичная система почечной реабсорбции существует и для аминокислот. Известно 7 различных систем вторичного AT аминокислот, работающих на основе симпорта с ионами Na+. При этом один и тот же переносчик способен транспортировать разные аминокислоты, имеющие сходную пространственную конфигурацию. В частности, имеется Nа+-симпортер для кислых аминокислот (глутаминовой и аспарагиновой), для основных аминокислот (аргинина, лизина и орнитина) и 5 разных переносчиков нейтральных аминокислот: цистина и цистеина; пролина, оксипролина и глицина, глицина; фенилаланина, лейцина, изолейцина, триптофана и метионина; таурина, β-аланина и γ-аминомасляной кислоты (ГАМК). Наследственные дефекты структуры и функции таких симпорте-ров приводят к аминоацидурии (наличию аминокислот во вторичной моче). Примером такой наследственной болезни является цистинурия, причиной которой является нарушение вторичного AT цистеина и ряда других аминокислот. Особенность этой аминоацидурии заключается в том, что на фоне повышенной концентрации цистеина в моче развивается нефролитиаз - формирование цистеиновых "камней" в почках. Это приводит к серьезным нарушениям функций мочевыделительной системы. В частности, характерным симптомом цистинурии (нефролитиаза) является гематурия (моча с кровью). Сопряженный транспорт (копорт) может осуществляться в виде первичного AT, т.е. с помощью насосов-АТФаз. Таким активным переносчиком является Nа/К -насос (Na/К -АТФаза), который функционирует, транспортируя ионы Na+ и К+ в противоположных направлениях и против градиентов их концентраций. С этой точки зрения, Na+/К+-АТФаза осуществляет первичный активный антипорт Na+ и К+. Na+/K+-нacoc является универсальным трансмембраиным (интегральным) компонентом нлазмалеммы практически всех эукариотических клеток. Он представляет собой сложную белковую структуру, активную в комплексе с молекулами холестерола и фосфатидилсерина. В составе насоса обнаруживают 3 разных белковых субъединицы (α, β и γ), по 2-4 субъсдиницы каждого тина. АТФазной активностью обладает цитоплазматический домен β-субъединицы, трансмембранный домен которой формирует канальную систему для транспорта Na+и К. Структура и локализация β-субъединицы в БЛС таковы, что гидролиз АТФ ее цитоплазматическим доменом приводит к AT Na из клетки, а К+ - в клетку. При этом на один рабочий цикл (одну молекулу АТФ) выводится 3 иона Na+ и вводится 2 иона К+, т.е. данный насос является электрогенным. Таким образом, работа β-субъединицы не только формирует два разнонаправленных градиента ионов (Na+ больше во внеклеточной среде, К+ - в гиалоплазме), но и приводит к поляризации плазмалеммы (избыток катионов с ее наружной стороны). Созданный насосом электрохимический градиент Na используется клетками для вторичного AT или создания потенциала действия (возбуждения) в нервных и мышечных клетках. Скорость работы насоса может достигать 100000 циклов/мин. Как оказалось, α - и γ-субъединицы насоса не имеют отношения к активному антипорту Na+ и К+. Взаимодействуя между собой и с β-субъединицей, они формируют канальные системы, через которые в клетку транспортируются глюкоза и аминокислоты. Эта система активируется изменением конформации β -субъединицы, те. при AT ионов Na+ и К+, сопряженном с гидролизом АТФ. Интенсивность работы Na/К-насоса может быть изменена действием определенных химических веществ, и эту особенность используют в медицинской практике. Так, для усиления сердечных сокращений (сократительной функции кардиомиоцитов) используют сердечные гликозиды (например, препараты растения наперстянки), которые подавляют активность Na/К-насоса. Ингибирование насоса вызывает гипополяризацию плазмалеммы кардиомиоцитов и, в свою очередь, накопление в них ионов Са, используемых для сокращения клеток сердечной мышцы. Однако препараты наперстянки одновременно нарушают функции желудочно-кишечного тракта и органа зрения. Действие ряда анестетиков, используемых при хирургических операциях для обезболивания и наркоза, основано на том, что они, встраиваясь в билипидный слой плазмалеммы нейронов, усиливают интенсивность работы Na+/K+-Hacoca. Это приводит к гиперполяризации плазмалеммы и, как следствие, блоку возникновения и проведения болевых нервных импульсов. Известны наследственные болезни, причина которых - изменение активности Na/K-АТФазы. Овалоцитарная анемия, или овалоцитоз, обусловлена усиленной активностью насоса, число единиц которого в эритроцитах достигает 600. Дефицит ионов Na+ в эритроцитах вызывает СТ молекул воды в плазму крови, в результате чего эритроциты изменяют свою форму - становятся овальными. При некоторых наследственных формах ожирения обнаруживается пониженная активность Na+/K+-нacoca. Одним из объяснений этой корреляции является то, что для работы насоса требуется большое количество молекул АТФ (около 30% всей клеточной АТФ). Если насос работает постоянно с меньшей интенсивностью, затраты АТФ существенно снижаются. Это, в свою очередь, приводит к уменьшению масштабов энергетического обмена в клетках и возникновению избытка глюкозы в организме. Одним из способов утилизации этого избытка является трансформация глюкозы в жиры, которые депонируются в клетках жировой ткани, вызывая симптомы ожирения. Кроме антипортных АТФаз существуют и пассивные антипортные переносчики. Такой вид сопряженного транспорта осуществляет, например, анионный переносчик, или капнофорин, обнаруживаемый в большом количестве в мембране эритроцитов. Данный переносчик способен к ПТ ионов Сl-, НСО3-, НРО42- и SO22-, однако наибольшую специфичность он проявляет в отношении антипорта Сl- и НСО3-. Огромное количество молекул капнофорина в плазмалемме эритроцитов обусловлено тем, что они обеспечивают эффективный транспорт диоксида углерода. Капнофорин представляет собой крупный (порядка 96 кДа) полипептид, включающий несколько грансмембранных альфа-спиральных участков, формирующих анионный канал. Цитоплазматический домен переносчика имеет центры связывания с белками цитоскелета, гемоглобином и ферментами гликолиза. Наружный домен капнофорина гликозилирован - содержит углеводные компоненты, которые являются антигенными детерминантами нескольких систем групп крови В мембране эритроцитов анионный переносчик представлен в виде гомодимеров, количество которых составляет около 50 тыс., причем каждый протомер димера обладает способностью к антипорту анионов со скоростью до 50000 циклов в секунду. Образовавшийся в тканях диоксид углерода очень быстро (3-4 мс) диффундирует в плазму крови и путем СТ проникает в эритроциты. Только 8% молекул газа транспортируется к легким в растворенном виде плазмой крови. Поступивший в эритроциты диоксид углерода частично связывается молекулами гемоглобина и транспортируется к легким в связанной форме. Основное количество газа (80%) превращается в анион НСО3 (гидрокарбонат-анион). В эритроцитах содержится фермент карбоангидраза, который катализирует реакцию взаимодействия диоксида углерода с молекулами воды, в результате чего образуется угольная кислота (СО2 + Н2О -> Н2СО3). Угольная кислота в водном растворе ершу диссоциирует на протон и гидрокарбонат-анион (Н2СОз -> Н+ + НСОз-). Образующиеся протоны взаимодействуют с молекулами оксигемоглобина, способствуя диссоциации от него кислорода, после чего кислород диффундирует в плазму крови и ткани. Таким образом, диссоциация угольной кислоты и протонирование гемоглобина приводят к увеличению концентрации иона НСОз- в гиалоплазме эритроцитов. Накапливающиеся в эритроците гидрокарбонат-анионы быстро выводятся по градиенту концентрации в плазму крови с помощью капнофорина. Этот антипортер фактически обменивает каждый гидрокарбонат-анион на анион Сl, так как концентрация Сl в плазме крови выше, чем в гиалоплазме эритроцитов. Анионы НСО3- транспортируются плазмой крови в легочные капилляры, где вновь с помощью капнофорина попадают в эритроциты, обмениваясь на ионы Сl, где на основе обратной реакции трансформируются в диоксид углерода. Появление в эритроцитах гидрокарбонат-аниона приводит к депротонированию гемолобина, после чего он приобретает способность присоединять молекулы кислорода, превращаясь в оксигемоглобин. Освободившиеся протоны взаимодействуют с НСОз-, в результате чего образуется угольная кислота, которая с помощью той же карбоангидразы расщепляется на молекулы воды и диоксида углерода. Диоксид углерода свободно диффундирует через БЛС плазмалеммы эритроцитов в плазму крови, откуда через стенки легочных капилляров и альвеол (легочных пузырьков) поступает в легкие и удаляется при выдохе. Таким образом, в легочных капиллярах протекают процессы, обратные происходящим в тканевых капиллярах, что обеспечивается обратимостью Функционирования анионного антипортера капнофорина и эритроцитарного фермента карбоангидразы. Карбоангидраза представлена и в плазмалемме эпителиальных клеток легочных капилляров, так что превращение НСОз- в СO2 может осуществляться и без транспорта гидрокарбонат-аниона в эритроциты - непосредственно в плазме крови, проходящей через капилляры легких. СТ, ПТ и AT подвержены частицы и молекулы малых и средних размеров. При этом СТ и ПТ осуществляются по законам диффузии - протекают «по градиенту концентрации». Благодаря этому, эти два вида транспорта часто объединяют общим названием «пассивный транспорт», подразделяя его на простую диффузию и облегченную диффузию. AT не подчиняется законам диффузии, протекая «против градиента концентрации», и поэтому требует энергетических затрат со стороны клетки. Рассмотренные механизмы транспорта не могут обеспечить поступление в клетку или вывод из нее крупных органических соединений, макромолекул типа биополимеров, не говоря о более сложных, надмолекулярных структурах. Эта проблема решается с помощью принципиально иного вида транспорта, осуществляемого ПА клетки. Транспорт в мембранной упаковке, или цитоз, характеризуется тем, что на определенных его стадиях транспортируемые вещества находятся внутри мембранных пузырьков, т.е. окружены мембраной, имеют мембранную упаковку. По направлению транспорта в отношении клетки, различают 3 вида цитоза: эндоцитоз (транспорт в клетку), экзоцитоз (транспорт из клетки) и трансцитоз, или диацитоз (транспорт через клетку). Эндоцитоз может осуществляться различными механизмами, в связи с чем выделяют 3 его варианта: фагоцитоз, макропиноцитоз и микропиноцитоз. При данных вариантах эндоцитоза транспортируемое вещество при поступлении в клетку окружается участком плазмалеммы и оказывается в цитоплазме внутри мембранного пузырька. Фагоцитозу подвергаются крупные молекулы и частицы, размер которых составляет 1 мкм и более. В результате фагоцитоза формируется мембранный пузырек с транспортируемой частицей, который называют фагосомой. Образование фагосомы является сложным процессом, требующим затрат энергии со стороны клетки - при дефиците АТФ в клетке фагоцитоз не осуществляется. Фагоцитоз представляет собой вид индуцируемого транспорта, зависящий от взаимодействия фагоцитируемой частицы с определенными компонентами ПА клетки. Такое специфическое взаимодействие (узнавание) - обеспечивается наличием в составе ПА клетки набора определенных интегральных белков или гликопротеинов, получивших название рецепторов фагоцитоза. Эти рецепторы связывают соответствующие им участки фагоцитируемой частицы - детерминанты фагоцитоза. Таким образом, фагоцитозу подвергаются только те частицы, которые содержат на своей поверхности детерминанты, узнаваемые рецепторами фагоцитоза в ПА данной клетки. Первый этап фагоцитоза представляет собой опосредованное рецепторами распознавание клеткой фагоцитируемой частицы. Разнообразие рецепторов у данной клетки может быть большим, но доказано, что фагоцитируется не любая крупная частица. Этап распознавания (взаимодействие «рецептор-детерминанта») является энергонезависимым, т.е. протекает без затрат АТФ клеткой. Связывание рецепторами соответствующих детерминант индуцирует второй этап фагоцитоза - формирование фагосомы. Данный этап является АТФ-зависимым и блокируется в условиях дефицита этого макроэрга. Образование фагосомы не происходит и при действии на клетку цитохалазинов, которые вызывают деполимеризацию актиновых МФ. Оба факта указывают на участие в формировании фагосомы АМС. Фагосома образуется путем формирования выростов ПА клетки - псевдоподий (ложноножек), которые обволакивают фагоцитируемую частицу со всех сторон. В основе этого процесса лежит взаимодействие клеточных рецепторов с детерминантами фагоцитоза на частице, благодаря чему псевдоподии перемещаются по частице и смыкаются над ней. В результате такого движения, механизм которого называют «застежкой молнии», фагоцитируемая частица оказывается внутри сформировавшейся фагосомы. Условием нормального протекания фагоцитоза является достаточное количество детерминант, расположенных по всей поверхности фагоцитируемой частицы. Если это условие не выполняется (например, детерминанты сконцентрированы в одном районе частицы), фагоцитоз может начинаться, но не завершается образованием фагосомы. Такая ситуация обозначается как незавершенный фагоцитоз, или абортивный фагоцитоз. Незавершенный фагоцитоз наблюдается и в том случае, если клетка пытается фагоцитировать структуру очень большого размера, сравнимого с размером самой клетки. У высших многоклеточных организмов, включая человека, способностью к фагоцитозу в норме обладают только определенные клетки, в первую очередь, клетки иммунной системы. Высокой фагоцитарной активностью характеризуются 2 вида лейкоцитов: нейтрофилы и макрофаги, которые объединяют термином «фагоциты». Кроме них, ограниченной способностью к фагоцитозу обладают эозинофилы (вид лейкоцитов) и В-лимфоциты. Осуществлять фагоцитоз могут и клетки, не относящиеся к иммунной системе. Это свойство обнаружено, в частности, у эндотелиоцитов (клеток эпителия капилляров) и нефроцитов (клеток эпителия почечных канальцев). На основе фагоцитоза осуществляется защитная функция организма. Во-первых, фагоциты способны уничтожать чужеродные клетки, например, бактериальные, обеспечивая один из элементов защиты от инфекционных заболеваний. Аналогичная ситуация характерна и для чужеродных макромолекулярных токсинов (ядов), фагоцитоз которых препятствует отравлению организма. Во-вторых, фагоциты могут уничтожать состарившиеся, изменившиеся или поврежденные клетки собственного организма. Так, у человека макрофаги ежедневно избавляют организм от 100 млрд, эритроцитов, утративших свои функции. Дефекты фагоцитоза у человека приводят к иммунодефицитным состояниям организма - повышенной чувствительности к бактериальным и вирусным инфекциям. Наследственные формы таких аномалий вызывают предрасположенность к хроническим инфекционным заболеваниям. В частности, известна наследственная аномалия, в результате которой фагоциты теряют способность к фагоцитозу из-за дефекта АМС. Люди с такими дефектными фагоцитами имеют повышенную чувствительность к инфекционным болезням. Блок фагоцитоза может быть обусловлен и наследственными дефектами рецепторов, узнающих антигенные детерминанты бактериальных клеток или вирусов. Эта особенность приобрела свое значение в эволюции некоторых паразитических микроорганизмов. В ходе естественного отбора их поверхностные детерминанты (антигены) видоизменяются таким образом, что не узнаются рецепторами фагоцитоза. В результате такие микробы избегают взаимодействия с фагоцитами и становятся сильно патогенными для организма, в котором они паразитируют. Внутриклеточные паразиты (вирусы, бактерии, простейшие) используют фагоцитоз как способ проникновения в клетке организма-хозяина. В таких случаях они способны блокировать внутриклеточные механизмы своего уничтожения, которые существуют в фагоцитирующей их клетке. Макропиноцитоз - это процесс эндоцитоза отдельных макромолекул, размеры которых составляют десятые доли мкм. Как и фагоцитоз, макропиноцитоз является АТФ-зависимым, однако этот вариант эндоцитоза не требует участия АМС. В частности, цитохалазины, разрушающие актиновые МФ и тем самым блокирующие фагоцитоз, не оказывают влияния на процесс макропиноцитоза. Для инициации макропиноцитоза, как и фагоцитоза, необходимо взаимодействие транспортируемой макромолекулы с высокоспецифичными к ней рецепторами, рецепторами макропиноцитоза. Благодаря этому макропиноцитоз называют также опосредуемым рецепторами эндоцитозом, хотя участие рецепторов универсальная характеристика всех вариантов эндоцитоза. Исключением является жидкостнофазный эндоцитоз - неспецифическое, пассивное включение низкомолекулярных внеклеточных веществ в формирующийся с помощью рецепторов мембранный пузырек. Макропиноцитоз происходит в специализированных участках ПА клетки, так называемых окаймленных ямках, суммарная площадь которых составляет около 2% площади ПА. Окаймленные ямки представляют собой небольшие и неглубокие впячивания плазмалеммы, в которых сконцентрированы рецепторы макропиноцитоза. В периферической гиалоплазме ямок находится большое количество молекул белка клатрина, взаимодействующих с мембранными белками и формирующих клатриновое окаймление ямки. На первом этапе макропиноцитоза, этапе узнавания, происходит связывание транспортируемых макромолекул специфичными к ним рецепторами. При этом высокая концентрация рецепторов именно в ямках позволяет связать большое количество соответствующих макромолекул в одной ямке. В результате концентрация молекул в ямках превышает концентрацию этих же молекул вне ямок более чем в 1000 раз. Таким образом, концентрирование рецепторов макропиноцитоза в ямках резко увеличивает эффективность этого вида транспорта на фоне его высокой селективности. Как и в случае фагоцитоза, первый этап макропиноцитоза является АТФ-независимым. Связывание большого количества транспортируемых молекул рецепторами служит сигналом для формирования мембранного пузырька, макропиносомы. Конкретно, происходит активация специфической протеинкиназы, с помощью которой осуществляется фосфорилирование белков окаймления ямки клатринов, для чего используются молекулы АТФ. Фосфорилированные клатрины приобретают способность к полимеризации, взаимодействуют друг с другом и белками плазмалеммы в ямке. В частности, к цитоплазматическому домену рецепторов макропиноцитоза присоединяется белок адаптин, с которым и связываются клатрины. Сложная структур
|
|||||||||
Последнее изменение этой страницы: 2016-09-05; просмотров: 166; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.15.203.195 (0.019 с.) |