Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Последствия повреждений базальных ганглиев

Поиск

При повреждении БГ возникают двигательные расстройства. В 1817 году британский врач Д. Паркинсон описал картину болезни, которую можно было бы назвать трясущимся параличом. Она поражает многих пожилых людей. В начале ХХ века было установлено, что у людей, страдающих болезнью Паркинсона, в чёрной субстанции исчезает пигмент. Позже удалось установить, что болезнь развивается вследствие прогрессирующей гибели дофаминергических нейронов чёрной субстанции, после которой нарушается баланс между тормозными и возбуждающими выходами из полосатого тела. При болезни Паркинсона можно выделить три основных типа двигательных расстройств. Во-первых, это мышечная ригидность или значительное повышение тонуса мышц, в связи с чем человеку трудно осуществить любое движение: трудно подняться со стула, трудно повернуть голову, не поворачивая одновременно всё туловище. Ему не удается расслабить мышцы на руке или ноге так, чтобы врач мог согнуть или разогнуть конечность в суставе, не встречая при этом значительного сопротивления. Во-вторых, наблюдается резкое ограничение сопутствующих движений или акинезия: исчезают движения рук при ходьбе, пропадает мимическое сопровождение эмоций, становится слабым голос. В-третьих, появляется крупноразмашистый тремор в покое - дрожание конечностей, особенно дистальных их частей; возможен тремор головы, челюсти, языка.

Таким образом, можно констатировать, что потеря дофамиеэргических нейронов чёрной субстанции приводит к тяжелому поражению всей двигательной системы. На фоне сниженной активности дофаминергических нейронов относительно возрастает активность холинергических структур полосатого тела, чем и можно объяснить большинство симптомов болезни Паркинсона. Открытие этих обстоятельств болезни в 50-х годах ХХ века ознаменовало собой прорыв в области нейрофармакологии, поскольку привело не только к возможности её лечения, но сделало понятным, что деятельность мозга может нарушаться в связи с поражением небольшой группы нейронов и зависит от определенных молекулярных процессов.

Для лечения болезни Паркинсона стали использовать предшественник синтеза дофамина - L-ДОФА (диоксифенилаланин), который, в отличие от дофамина, способен преодолевать гематоэнцефалический барьер, т.е. проникать в мозг из кровяного русла. Позже нейромедиаторы и их предшественники, а также вещества, влияющие на передачу сигналов в определённых структурах мозга, стали использовать для лечения психических заболеваний.

При поражении нейронов хвостатого ядра и скорлупы, использующих в качестве медиаторов ГАМК или ацетилхолин, баланс между этими медиаторами и дофамином изменяется, возникает относительный избыток дофамина. Это приводит к появлению непроизвольных и нежелательных для человека движений – гиперкинезов. Одним из примеров гиперкинетического синдрома является хорея или пляска святого Витта, при которой появляются насильственные движения, отличающиеся разнообразием и беспорядочностью, они напоминают произвольные движения, но никогда не объединяются в координированные действия. Такие движения возникают и во время покоя и во время произвольных двигательных актов.

Запомните: БАЗАЛЬНЫЕ ГАНГЛИИ:

---участвуют в интеграции тонических рефлексов;
---являются одним из уровней системы регуляции движений, передают в основном тормозные влияния к моторной коре и в ствол мозга; ---являются важнейшим связующим звеном между ассоциативными и моторными областями коры больших полушарий
---участвуют в создании программ целенаправленных движений. Их роль важна в переходе от замысла движений (фаза подготовки) к выбранной программе действия (фаза выполнения), а также в формировании необходимой для выполнения движения позы.

 

Мозжечок и базальные ганглии относят к структурам программного обеспечения движений. В них заложены генетически детерминированные, врожденные и приобретённые программы взаимодействия разных групп мышц в процессе выполнения движений.

Высший уровень регуляции двигательной активности осуществляет кора головного мозга.

 

РОЛЬ КОРЫ БОЛЬШИХ ПОЛУШАРИЙ

В РЕГУЛЯЦИИ ТОНУСА И УПРАВЛЕНИИ ДВИЖЕНИЯМИ.

«Третий этаж» или уровень регуляции движений - это кора больших полушарий, которая организует формирование программ движений и их реализацию в действие. Зарождающийся в ассоциативных зонах коры замысел будущего движения поступает в моторную кору. Нейроны моторной коры организуют целенаправленное движение с участием БГ, мозжечка, красного ядра, вестибулярного ядра Дейтерса, ретикулярной формации, а также – с участием пирамидной системы, непосредственно воздействующей на альфа-мотонейроны спинного мозга.

Корковое управление движениями возможно лишь при одновременном участии всех моторных уровней. Двигательная команда, передаваемая из коры головного мозга, оказывает воздействие через более низкие моторные уровни, причём каждый из них вносит свой вклад в окончательную двигательную реакцию. Без нормальной деятельности нижележащих моторных центров корковое моторное управление было бы несовершенным.

Сейчас уже многое известно о функциях моторной коры. Её рассматривают как центральную структуру, управляющую самыми тонкими и точными произвольными движениями. Именно в моторной коре строится конечный и конкретный вариант моторного управления движениями. Моторная кора использует два принципа управления движениями: контроль через петли обратной сенсорной связи и через механизмы программирования. Это достигается тем, что к ней сходятся сигналы от мышечной системы, от сенсомоторной, зрительной и других отделов коры, которые и используются для моторного контроля и коррекции движения.

Афферентные импульсы к моторным зонам коры поступают через моторные ядра таламуса. Через них кора связана с ассоциативными и сенсорными зонами самой коры, с подкорковыми базальными ганглиями и мозжечком.

Моторная область коры регулирует движения с помощью эфферентных связей трёх типов: а) прямо на мотонейроны спинного мозга через пирамидный тракт, б) косвенно при помощи связи с нижележащими двигательными центрами, в) ещё более косвенная регуляция движений осуществляется путём влияния на передачу и обработку информации в чувствительных ядрах мозгового ствола и таламуса.

Как уже говорилась, сложную моторную деятельность, тонкие координированные действия определяют моторные области коры, от которых к стволу и спинному мозгу направляются два важных пути: кортикоспинальный и кортикобульбарный, которые иногда объединяют под названием пирамидный тракт. Кортикоспинальный путь, обеспечивающий управление мышцами туловища и конечностей, заканчивается либо прямо на мотонейронах, либо на интеронейронах спинного мозга. Кортикобульбарный путь осуществляет контроль двигательных ядер черепно-мозговых нервов, управляющих мышцами лица и движениями глаз.

Пирамидный тракт является самым большим нисходящим моторным путём; он образован приблизительно одним миллионом аксонов, больше половины которых принадлежит нейронам, которые называются клетки Беца или гигантские пирамидные клетки. Они расположены в V слое первичной моторной коры в области прецентральной извилины. Именно от них берёт начало кортикоспинальный путь или так называемая пирамидная система. Через посредство вставочных нейронов или путём прямого контакта волокна пирамидного тракта образуют возбуждающие синапсы на мотонейронах сгибателей и тормозные –на мотонейронах разгибателей в соответствующих сегментах спинного мозга. Спускаясь к мотонейронам спинного мозга, волокна пирамидного тракта отдают многочисленные коллатерали к другим центрам: красному ядру, ядрам моста, ретикулярной формации ствола мозга, а также к таламусу. Эти структуры связаны с мозжечком. Благодаря связям моторной коры с двигательными подкорковыми центрами и мозжечком, она участвует в обеспечении точности выполнения всех целенаправленных движений - как произвольных, так и непроизвольных.

Пирамидный путь частично перекрещивается, поэтому инсульт или иное повреждение правой моторной зоны вызывает паралич левой половины тела, и наоборот

До сих пор можно встретить, наряду термином пирамидная система, ещё один: экстрапирамидный путь или экстрапирамидная система. Этот термин применялся для обозначения других двигательных путей, идущих от коры к двигательным центрам. В современной физиологической литературе термин экстрапирамидный путь и экстрапирамидная система не используется.

Нейроны в двигательной коре, также как и в сенсорных областях, организованы в вертикальные колонки Корковая моторная (другое название – двигательная) колонка – это небольшой ансамбль двигательных нейронов, которые контролируют группу связанных между собой мышц. Как сейчас полагают, их важная функция состоит не просто в том, чтобы активировать те или другие мышцы, а в том, чтобы обеспечивать определенное положение сустава. В несколько общей форме можно сказать, что кора кодирует наши движения не путем приказов о сокращении отдельных мышц, а путем команд, обеспечивающих определенное положение суставов. Одна и та же группа мышц может быть представлена в разных колонках и может участвовать в разных движениях

Пирамидная система является основой наиболее сложной формы двигательной активности - произвольных, целенаправленных движений. Кора больших полушарий является субстратом для обучения новым видам движений (например, спортивным, производственным и т.д.). В коре хранятся сформированные в течение жизни программы движений,

Ведущая роль в построении новых моторных программ принадлежит передним отделам КБП (премоторной, префронтальной коре). Схема взаимодействия ассоциативных, сенсорных и моторных областей коры при планировании и организации движений представлена на рисунке 14.

 

 

Рисунок 14. Схема взаимодействия ассоциативных, сенсорных и моторных областей при планировании и организации движений

 

Планировать предстоящие действия начинает префронтальная ассоциативная кора лобных долей на основе информации, поступающей, в первую очередь, от заднетеменных областей, с которыми её связывает множество нейронных путей. Выходная активность префронтальной ассоциативной коры адресована премоторным или вторичным моторным областям, которые создают конкретный план предстоящих действий и непосредственно готовят моторные системы к движению. К вторичным двигательным областям относятся премоторная кора и добавочный моторный ареал (добавочная моторная область). Выходная активность вторичной моторной коры направлена к первичной моторной коре и к подкорковым структурам. Премоторная область контролирует мышцы туловища и проксимальные отделы конечностей. Эти мышцы особенно важны в начальной фазе выпрямления тела или движения руки к намеченной цели. В отличие от этого, добавочный моторный ареал участвует в создании модели двигательной программы, а также программирует последовательность движений, которые выполняются билатерально (например, когда надо действовать обеими конечностями).

Вторичная моторная кора занимает в иерархии двигательных центров главенствующее над первичной моторной корой положение: во вторичной коре движения планируются, а первичная - этот план выполняет.

Первичная моторная кора обеспечивает простые движения. Она расположена в передних центральных извилинах мозга. Исследования на обезьянах показали, что в передней центральной извилине имеются неравномерно распределенные зоны, управляющие различными мышцами тела. В этих зонах мышцы тела представлены соматотопически, то есть каждой мышце соответствует свой участок области (двигательный гомункулус) (рис 15).


Рисунок 15. Соматотопическая организация первичной моторной коры - двигательный гомункулус

 

Как показано на рисунке, самое большее место занимает представительство мышц лица, языка, кистей рук, пальцев - то есть тех частей тела, которые несут наибольшую функциональную нагрузку и могут совершать самые сложные, тонкие и точные движения, и в то же время сравнительно мало представлены мышцы туловища и ног.

Моторная кора управляет движением, используя информацию, поступающую как по сенсорным путям от других отделов коры, так и от генерируемых в ЦНС моторных программ, которые актуализируются в базальных ганглиях и мозжечке и доходят до моторной коры через таламус и префронтальную кору. Полагают, что в БГ и в мозжечке уже заложен механизм, который может актуализировать хранящиеся в них двигательные программы. Однако, для приведения в действие всего механизма необходимо, чтобы в эти структуры поступил сигнал, который послужил бы начальным толчком процесса. По-видимому, существует общий биохимический механизм актуализации моторных программ в результате роста активности дофаминергических и норадренергических систем в мозге.

Согласно гипотезе, высказанной П. Робертсом, актуализация моторных программ происходит вследствие активации командных нейронов. Существует два типа командных нейронов. Одни из них лишь запускают ту или иную двигательную программу, но не участвуют в её дальнейшем осуществлении. Эти нейроны называются нейроны-триггеры. Командные нейроны другого типа получили название воротных нейронов. Они поддерживают или видоизменяют двигательные программы лишь будучи в состоянии постоянного возбуждения. Такие нейроны обычно управляют позными или ритмическими движениями. Сами командные нейроны могут контролироваться и затормаживаться сверху. Снятие торможения с командных нейронов повышает их возбудимость и тем самым высвобождает «предпрограммированные» цепи для той деятельности, для которой они предназначены

В заключение следует отметить, что двигательные (моторные) области коры больших полушарий служат последним звеном, в котором образованный в ассоциативных и других зонах (а не только в моторной зоне) замысел превращается в программу движения. Главной задачей моторной коры является выбор группы мышц, ответственных за выполнение движений в каком-либо суставе, а не непосредственная регуляция силы и скорости их сокращения. Эту задачу выполняют нижележащие центры вплоть до мотонейронов спинного мозга. В процессе выработки и реализации программы движения моторная область коры получает информацию от БГ и мозжечка, которые посылают к ней корректирующие сигналы.

Запомните:

КОРА БОЛЬШИХ ПОЛУШАРИЙ:

---регулирует силу спинномозговых и стволовых двигательных рефлексов;
---участвует в формировании и хранении программ сложных врожденных и всех приобретенных движений;
---обеспечивает выполнение целенаправленных произвольных двигательных актов.
---в коре формируется замысел или цель движения, происходит выбор программ движения, а также запуск сложных видов движений;

 

Заметим, что пирамидные, руброспинальные и ретикулоспинальные пути активируют преимущественно флексорные, а вестибулоспинальные - преимущественно экстензорные мотонейроны спинного мозга. Дело в том, что флексорные двигательные реакции являются основными рабочими двигательными реакциями организма и требуют более тонкой и точной активации и координации. Поэтому в процессе эволюции большинство нисходящих путей специализировалось по активации именно флексорных мотонейронов.



Поделиться:


Последнее изменение этой страницы: 2016-09-05; просмотров: 748; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.16.203.55 (0.01 с.)