Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Методы исследования деятельности желез внутренней секреции

Поиск

Эндокринная система

Особенно важную роль в гуморальном взаимодействии органов, тканей и клеток играют те из них, которые имеют специализированную способность вырабатывать вещества, изменяющие состояние организма, функцию, обмен веществ и структуру органов и тканей. Эти вещества называют гормонами (от греческого слова «horman» — возбуждать), а выделяющие их органы - эндокринными железами, или железами внутренней секреции. Они названы так потому, что в отличие от желез внешней секреции не имеют выводных протоков и выделяют образующиеся в них вещества непосредственно в кровь.

К железам внутренней секреции относятся гипофиз, щитовидная железа, околощитовидные железы, островковый аппарат поджелудочной железы, кора и мозговое вещество надпочечников, половые железы и плацента, эпифиз. Кроме того, гормоны выделяются некоторыми органами и тканями, несущими в организме, помимо эндокринной, другую специализированную функцию (почки, пищеварительный тракт и др.).

Гормоны обладают дискантным действием, т. е. поступая в кровяное русло, могут оказывать влияние на весь организм и на органы и ткани, расположенные вдали от той, железы, где они образуются.

Выделяют четыре типа влияния гормонов на организм:

1. Метаболическое (действие на обмен веществ);

2. Морфогенетическое (стимуляция формообразовательных процессов, дифференцировки, роста, метаморфоза);

3. Кинетическое (включающее определенную деятельность исполнительных органов);

4. Корригирующее (изменяющее интенсивность функции органов и тканей).

Характерным свойством гормонов является их высокая физиологическая активность. Это означает, что очень малое количество гормона может вызвать изменения функций организма.

Так, адреналин, действует на изолированное сердце в концентрации 1:10-7 г/мл. Достаточно 1 г инсулина, чтобы понизить уровень сахара у 125 000 кроликов.

Гормоны сравнительно быстро разрушаются в тканях, в частности печени. По этой причине для поддержания достаточного количества гормонов в крови и обеспечения более длительного или непрерывного действия необходимо постоянное выделение их соответствующей железой.

К настоящему времени удалось расшифровать структуру большинства известных гормонов и синтезировать их. На основе общности химической структуры; путей эволюционного развития, близости физико-химических и биологических свойств известные гормоны позвоночных могут быть разделены на три основных класса: 1) стероиды; 2) производные аминокислот; 3) белково-пептидные соединения.

Стероидные гормоны и гормоны — производные аминокислот не имеют видовой специфичности и обычно оказывают однотипное действие на представителей разных видов.

Белково-пептидные гормоны, как правило, обладают видовой специфичностью. Выделенные из организма животного, они не всегда могут быть использованы для введения человеку, так как подобно любым чужеродным белкам могут вызвать защитные (иммунные) реакции организма, например образование специфических антител, которые инактивируют данный гормон при повторном его введении, а также могут вызывать явления аллергии.

Отдельные фрагменты молекул гормонов несут различную функцию: фрагменты (гаптомеры), обеспечивающие поиск места («адреса») действия гормона; фрагменты, обеспечивающие специфические влияния гормона на клетку (актоны); фрагменты, регулирующие степень активности гормона и другие свойства его молекулы. Гормоны транспортируются кровью не только в свободном (водорастворимые гормоны), но и в связанном с белками плазмы крови или ее форменными элементами виде. Существуют белки плазмы крови, избирательно связывающие определенные гормоны: γ-глобулины, альбумины, трансферон и другие белки, способные образовывать комплексы с различными гормонами.

Активность действия гормона в этом случае определяется не только концентрацией его в крови, но и скоростью отщепления от транспортирующих гормон белков или форменных элементов.

Важное значение имеет скорость поглощения (и разрушения) гормонов клетками органов и тканей; скорость разрушения их печенью и другими органами и выведения их почками.

Для определения интенсивности метаболизма гормонов используются время полураспада гормонов (Т1/2), т. е. время, за которое концентрация введенной в кровь порции радиоактивного гормона уменьшается вдвое (табл. 9).Интенсивность синтеза и выделения каждого гормона железой в данный момент регулируется в соответствии с величиной потребности организма в данном гормоне. Регуляцияфункций эндокринных желез осуществляется несколькими способами. Один из них прямое влияние на клетки железы концентрации в крови того вещества, уровень которого регулирует данный гормон. Примером могут служить угнетение выработки паратгормона (повышающего уровень кальция в крови) при воздействии на клетку пара-щитовидных желез повышенных концентраций Са2+ и стимуляция секреции этого гормона при падении уровня Са2+ в крови. Другим примером может быть усиление секреции инсулина (снижающего уровень глюкозы крови) при повышении концентрации глюкозы в крови, протекающей через поджелудочную железу. Чаще всего регуляция секреции гормона соответствующим субстратом (или состоянием организма) осуществляется не прямо, а опосредованно — нейрогормональными или чисто гормональными механизмами (с участием других желез внутренней секреции).

 

 

2. Нервная регуляция деятельности желез внутренней секреции.

 

Прямых нервных (нервно-проводниковых) влияний на секреторные клетки желез внутренней секреции, как правило, не наблюдается (за исключением мозгового вещества надпочечников эпифиза). Нервные волокна, иннервирующие железу, регулируют в основном тонус кровеносных сосудов и кровоснабжение железы (величина которого связана с интенсивностью их функции). Как известно, нервная регуляция физиологических функций осуществляется строго локально — через определенные синапсы, напоминая по точности эффекта телеграфную связь, где телеграмма доставляется точно по определенному адресу. В отличие от этого принцип влияния гормонов напоминает радиосвязь, когда посылаемый в эфир сигнал адресуется «всем, всем, всем» (так как циркулирующий в крови гормон может действовать на любые органы и ткани).

В действительности же радиосигнал, посланный всем, доходит до адресата лишь при наличии приемника, точно настроенного на волну данной станции. Подобно этому и в организме гормон хотя и достигает с током крови всех органов и тканей, но действует при этом лишь на те клетки, ткани и органы, которые обладают специфическими рецепторами, настроенными на восприятие именно данного гормона. Такие органы и ткани получили название органов- и тканей-мишеней.

Рецептор представляет собою специальный белок, определенная часть молекулы которого обладает структурой, изоморфной определенному фрагменту (гаптомеру) молекулы гормона. Это и обеспечивает прием сигнала, т. е. специфические взаимодействие гормона с клеткой. Данные рецепторы могут располагаться внутри клетки, но могут быть встроены в поверхностную мембрану клетки. Гормоны, плохо проникающие внутрь клетки (катехоламины и пептидные гормоны), фиксируются на мембране снаружи. В этом случае необходимо наличие внутриклеточных посредников-медиаторов, передающих влияние гормона на определенные внутриклеточные структуры. К таким медиаторам относятся циклический аденозинмонофосфат (цАМФ), циклический гуанозинмонофосфат (цГМФ), простагландины, Са2+ и другие соединения. Эти медиаторы предсуществуют в клетке и поэтому обеспечивают быстрый специфический эффект указанных гормонов.

Гормоны, сравнительно легко проникающие через мембрану клетки (стероидные и в некоторой степени тиреоидные гормоны), оказывают непосредственное специфическое влияние на определенные внутриклеточные структуры. Их действие развертывается и осуществляется длительно, так как они, как правило, влияют на процессы транскрипции, осуществляющиеся в клеточном ядре, изменяя процессы синтеза определенных клеточных белков.

ПЕРЕДНЯЯ ДОЛЯ ГИПОФИЗА

Передняя доля, или аденогипофиз, состоит из главных или хромофобных клеток (55—60% всех клеток) и хромофильных: ацидофильных (30—35%) и базофильных (5— 10%). Хромофобные клетки, по-видимому, гормонов не продуцируют и являются предшественниками хромофильных клеток. Ацидофильные клетки продуцируют соматотропный гормон и пролактин. Все гормоны передней доли являются белковыми веществами. Базофильные клетки продуцируют адренокортикотропный, тиреотропный и гонадотропный (фолликулостимулирующий и лютеинизирующий) гормоны.

Соматотропный гормон

Соматотропный гормон (гормон роста, соматотропин) стимулирует синтез белка ворганах и тканях и рост молодых животных.

У соматотропного гормона хорошо выражена видовая специфичность. Препараты, полученные из гипофиза быка и свиньи, мало влияют или совсем не влияют на рост обезьяны и человека.

Соматотропин низших обезьян малоэффективен у человека, но гормон роста человека и высших обезьян ускоряет рост низших обезьян. Сделан вывод, что соматотропный гормон действует вниз и не действует вверх по эволюционной лестнице.

Соматотропин повышает биосинтез рибонуклеиновой кислоты — необходимого звена синтеза белков. Он усиливает транспорт аминокислот из крови в клетки. В связи с увеличенным синтезом белков в крови падает содержание аминокислот. Происходит задержка в организме азота (баланс азота становится положительным), а также фосфора, кальция, натрия.

Для эффекта соматотропина, усиливающего синтез белка в клетках, необходимо наличие углеводов и инсулина. После удаления поджелудочной железы у животных, а также при исключении из пищи углеводов действие гормона роста тормозится. Введение больших количеств этого гормона усиливает секрецию инсулина у молодых животных. У взрослых животных секреция инсулина не усиливается, а островки поджелудочной железы перерождаются и возникает сахарный диабет. При введении гормона роста усиливаются мобилизация жира из депо и использование его в энергетическом обмене. Это ведет к увеличению расхода жиров, а также к повышению уровня кетоновых тел в крови и выделению их с мочой.

Соматотропный гормон выделяется непрерывно на протяжении всей жизни организма. Его выделение стимулируется соматотропин- высвобождающим фактороми тормозится соматостатином— продуктами нейросекреции гипоталамуса.

У детей раннего возраста изменения, возникающие при недостаточной выработке гормона роста, проявляются в резкой задержке роста. При этом на всю жизнь человек остается карликом (гипофизарный нанизм). Телосложение у таких людей относительно пропорционально, однако кисти стопы малы, пальцы тонкие, окостенение скелета запаздывает, половые органы недоразвиты, вторичные половые признаки слаборазвиты, волосы отличаются мягкостью и шелковистостью, свойственной детям. Такие люди плохо переносят инфекционные и другие болезни, часто умирают молодыми. У мужчин, страдающих этим заболеванием, отмечается импотенция, т. е. неспособность к половому акту, а у женщин — стерильность, т. е. неспособность к зачатию.

При избыточной продукции гормона роста в детском возрасте развивается гигантизм; рост человека может достигать 240—250 см, а масса тела — 150 кг и более. Если же избыточная продукция гормона роста возникает у взрослого, то рост тела в целом не увеличивается, так как он уже завершен, но увеличиваются размеры тех частей тела, которые еще сохраняют способность расти: пальцев рук и ног, кистей и стоп, носа, нижней челюсти, языка, органов грудной и брюшной полостей. Это заболевание называется акромегалией. Как у гипофизарных гигантов, так и у больных акромегалией наблюдается нарушенная функция желез внутренней секреции, регулируемых гормонами передней доли гипофиза, в частности недостаточность внутрисекреторной функции половых желез. При акромегалии отмечается также недостаточность инсулярной ткани поджелудочной железы, приводящая к сахарному диабету. Причиной акромегалии обычно является опухоль передней доли гипофиза, состоящая из ацидофильных клеток.

ПРОМЕЖУТОЧНАЯ ДОЛЯ ГИПОФИЗА

У большинства животных и у человека промежуточная доля гипофиза обособлена вредней доли и сращена с задней. Гормон промежуточной доли — интермедин, или меланоцитстимулирующий гормон. Он выделен в химически чистом виде. Определена также последовательность входящих в его состав аминокислот. Гормон встречается в двух формах, различающихся по числу аминокислотных остатков.

У амфибий (в частности, у лягушек) и у некоторых рыб интермедии вызывает потемнение кожи вследствие расширения ее пигментных клеток—меланофоров и более широкого распределения находящихся в их протоплазме пигментных зернышек. Значение интермедина состоит в приспособлении окраски покровов тела к цвету окружающей среды.

При наличии у людей участков кожи, не содержащих пигмента, внутрикожная инъекция интермедина в соответствующие участки приводит к постепенной нормализация их цвета.

Во время беременности и при недостаточности коры надпочечников (в обоих случаях нередко наблюдаются изменения пигментации кожи) количество меланоцитстимулирующего гормона в гипофизе возрастает. По-видимому, интермедии у человека также является регулятором кожной пигментации.

Секреция интермедина промежуточных долей гипофиза регулируется рефлекторно действием света на сетчатку глаза. У млекопитающих и человека интермедии имеет значение в регуляции движений клеток черного пигментного слоя в глазу. При ярком свете клетки пигментного слоя выпускают псевдоподии, благодаря чему избыток световых лучей поглощается пигментом и сетчатка не подвергается интенсивному раздражению.

ЗАДНЯЯ ДОЛЯ ГИПОФИЗА

Задняя доля гипофиза (нейрогипофиз) состоит из клеток, напоминающих клетки глии,— так называемых питуицитов. Эти клетки регулируются нервными волокнами, ко­торые проходят в ножке гипофиза и являются отростками нейронов гипоталамуса. Гипофункция задней доли является причиной несахарного мочеизнурения (несахарного диабета). При этом наблюдается выделение больших количеств мочи (иногда десят­ки литров в сутки), не содержащей сахар, и сильная жажда. Подкожное введение препарата задней доли гипофиза таким больным снижает суточное выделение мочи до нормы. При этом установлено поражение задней доли гипофиза.

Из задней доли гипофиза получены два препарата; один резко снижает выделение мочи и повышает артериальное давление, а другой вызывает сокращение мускулатуры матки. Первый назван антидиуретическим гормоном, или вазопрессином, второй — окситоцином.

Механизм антидиуретического действия вазопрессина состоит в усилении обратного всасывания воды стенками собирательных трубочек почек. По этой причине при введении животным и человеку данного гормона у них не только уменьшается диурез, но увеличивается относительная плотность (удельный вес) мочи.

Вазопрессин вызывает сокращение гладких мышц сосудов (особенно артериол) и ведет к повышению артериального давления. Однако прессорный эффект наблюдается лишь при искусственном введении больших доз гормона; выделяющееся же в норме количество вазопрессина дает лишь антидиуретический эффект и практически не влияет на гладкую мускулатуру сосудов.

Окситоцин стимулирует сокращение гладких мышц матки, особенно в конце беременности. Наличие этого гормона является обязательным условием нормального течения родового акта. При удалении гипофиза у беременных самок роды затрудняются и удлиняются. Окситоцин также влияет на отделение молока.

Определена химическая структура как вазопрессина, так и окситоцина, и они получены синте­тически. Оказалось, что молекула каждого из них состоит из 8 аминокислот и 3 молекул аммиака. Шесть аминокислот одинаковы и в вазопрессине, и в окситоцине, а 2 аминокислоты в этих гормо­нах разные (в окситоцине — лейцин и изолейцин, в вазопрессине — фенилаланин и аргинин). Таким образом, в отличие от гормонов передней доли гипофиза гормоны задней доли являются полипеп­тидами не очень сложного состава.

ГОРМОНЫ ЩИТОВИДНОЙ ЖЕЛЕЗЫ

В ткани щитовидной железы содержится йод, который входит в состав гормонов, образуемых фолликулами этой железы. Характерной особенностью клеток этой железы является их способность поглощать йод, так что его концентрация внутри клеток в 300 раз выше, чем в плазме крови.

Поступление йода внутрь клетки против концентрационного градиента возможно благодаря особому механизму — «йодному насосу», локализующемуся в мембране клетки и требующему для своей работы значительной затраты энергии. Источником энергии активного транспорта ионов йода является аденозинтрифосфорная кислота. Предпола­гается, что йод вступает в обратимые соединения с какими-то веществами, находящимися на клеточной мембране и выполняющими роль переносчиков йода. При недостатке йода, необходимого для синтеза гормонов щитовидной железы, ткань железы разрастается — возникает зоб.

В железе синтезируются йодированные соединения: монойодтирозин и дийодтирозин. Они образуют в клетках фолликулов железы комплексное соединение с белком — тиреоглобулин, который может сохраняться в фолликулах в течение нескольких месяцев. При его гидролизе протеазой, вырабатываемой клетками железы, освобождаются ак тивные гормоны — трийодтиронин и тетрайодтиронин. или тироксин. Трийодтиронин и тироксин переходят в кровь, где связываются с белками плазмы крови тироксинсвязы-вающим глобулином (ТСГ), тироксинсвязывающим преальбумином (ТСПА) и альбумином, являющимися переносчиками гормонов. В тканях эти комплексы расщепляются, освобождая тироксин и трийодтиронин.

Содержание в плазме крови тироксина, не связанного с белками, составляет всего около 0,1% всего количества этого гормона в крови. Однако именно не связанный с белками тироксин оказывает свое физиологическое действие. Связанный же с белками тироксин является резервом, из которого по мере уменьшения содержания в крови свободного тироксина, освобождаются новые его активные порции.

Трийодтиронин физиологически более активен, чем тироксин, количество его в плазме крови в 20 раз меньше.

Характерное действие гормонов щитовидной железы— усиление энергетического обмена — при введении тироксина начинается через 24 ч и достигает максимума через 12 дней. При введении трийодтиронина повышение энергетического обмена начинается через 6 — 12 ч. Если же вводится трийодтироуксусная кислота, повышение обмена начинается немедленно. На этом основании полагают, что активным началом, дей- ствующим на обмен веществ, является трийодтироуксусная кислота. Ее образование в тканях из трийодтиронина происходит быстрее, чем из тироксина.

Тироксин, трийодтиронин, трийодтироуксусная кислота и некоторые другие йодированные соединения, образуемые щитовидной железой, резко усиливают окислительные процессы. В наибольшей мере активизируются окислительные процессы в митохондриях, что ведет к усилению энергетического обмена клетки.

Значительно увеличивается основной обмен. Растет потребление кислорода и выделение углекислоты. Организм становится чувствительным к недостатку кислорода; он плохо переносит пребывание на больших высотах.

Теплообразование значительно превосходит норму. Большая затрата энергии при работе приводит к быстро возникающему утомлению.

Тироксин усиливает расходование углеводов, жиров и белков. Возникает похудание и интенсивное потребление тканями глюкозы из крови. Убыль глюкозы из крови возмещается ее пополнением за счет усиленного распада гликогена в печени и мышца Усиленное расходование жиров при введении тироксина ведет к уменьшению дыхательного коэффициента до 0,75 (т. е. приближает его к дыхательному коэффициенту, характерному для окисления жира). Интенсивное расходование белков приводит к увеличе- нию количества азота в моче и дезаминирования аминокислот в печени.

Действие гормона осуществляется путем непосредственной стимуляции процессе митохондриального окисления при снижении его эффективности, в результате чего образование АТФ может снижаться (разобщение дыхания и фосфорилирования).

Гормоны щитовидной железы ускоряют развитие организма. Йодосодержащие гормоны щитовидной железы оказывают стимулирующее влияние на ЦНС. При многодневном введении собакам больших доз тироксина животные становятся беспокойными, часто вздрагивают; сухожильные (например, коленный) рефлексы усиливаются, появляется дрожание (тремор) конечностей, особенно если конечность вытянута и не имеет опоры. Йодосодержащие гормоны щитовидной железы накапливаются в структурах ретикулярной формации ствола мозга в больших количествах, чем в других отделах ЦНС, повышая ее тонус, оказывают, таким образом, активирующее влияние на кору больших полушарий мозга.

Тирокальцитонин. Кроме йодсодержащих гормонов, в щитовидной железе образуется тирокальцитонин, снижающий содержание кальция в крови. Под влиянием тирокальцитонина угнетается функция остеокластов, разрушающих костную ткань, и активируется функция остеобластов, способствующих образованию костной ткани и поглощени ионов Са2+ из крови. Тирокальцитонин — гормон, сберегающий кальций в организм.

Местом образования тирокальцитонина являются парафолликулярные клетки, расположенные вне железистых фолликулов щитовидной железы и отличающиеся по своему эмбриогенезу. Обнаружены видовые различия тирокальцитонина человека и животных.

КОРА НАДПОЧЕЧНИКОВ

В коре надпочечников различают три зоны: наружную — клубочковую (zona glomerulosa), среднюю — пучковую (zona fasciculata) и внутреннюю — сетчатую (zona reticularis). Из коры надпочечника выделено около 50 кортикостероидов, однако только 8 из них являются физиологически активными.

Недостаточная продукция гормонов коры надпочечников наблюдается у человека при тяжелом заболевании, описанном в 1855 г. Аддисоном и получившим название бронзовой болезни, или болезни Аддисона. Ранними ее признаками являются: бронзовая окраска кожи (отсюда название «бронзовая болезнь»), особенно на руках, шее, лице; ослабление сердечной мышцы; астения (повышенная утомляемость при мышечной, а также умственной работе). Больной становится чувствительным к холоду и болевым раздражениям, более восприимчивым к инфекциям. Он худеет и посте­пенно доходит до полного истощения.

При опухоли надпочечника — гипернефроме продукция гормонов корой надпочечников увеличена и качественно изменена: выделяются главным образом два половых гормона — мужской и женский, которые в норме в коре надпочечников образуются лишь в незначительных количествах. Поэтому у больных гипернефромой возникают более или менее резко выраженные изменения поло­вого развития. Описаны гипернефромы у мальчиков 3—4 лет с ранним половым созреванием, ростом бороды и волос на лобке. Известны также гипернефромы у женщин с прекращением менструаций, появлением бороды и грубого мужского голоса. Удаление опухоли ликвидирует эти нарушения.

Гормоны коры надпочечников

Гормоны коры надпочечников делятся на три группы: 1) минералокортикоиды — альдостерон и дезоксикортикостерон, выделяемые клубочковой зоной и регулирующие минеральный обмен; 2) глюкокортикоиды — гидрокортизон, кортизон и кортикостерон (последний является одновременно и минералокортикоидом), выделяемые пучковой зоной и влияющие на углеводный, белковый и жировой обмен; 3) половые гормоны — андрогены, эстрогены, прогестерон, выделяемые сетчатой зоной.

Минералокортикоиды. Минералокортикоиды участвуют в регуляции минерального обмена организма и в первую очередь уровня нитрид, и калия в плазме крови.

Из минералокортикоидов наиболее активен альдостерон. В клетках эпителия канальцев почки он активирует синтез ферментов, повышающих энергетическую эффективность натриевого насоса. Вследствие этого увеличивается реабсорбция натрия и хлора в канальцах почек, что ведет к повышению содержания натрия в крови, лимфе и тканевой жидкости. Одновременно он снижает реабсорбцию калия в канальцах почки, а это приводит к потере калия и уменьшает его содержание в организме. Подобные изменения возникают в клетках эпителия желудка и кишечника, слюнных и потовых железах. Таким путем альдостерон может предотвратить потерю натрия при сильном потоотделение во время перегревания.

Увеличение под влиянием альдостерона концентрации натрия в крови и тканевой жидкости повышает их осмотическое давление, приводит к задержке воды в организме и способствует возрастанию уровня артериального давления. Вследствие этого тормозится выработка ренина почками. Усиленная реабсорбция натрия может привести к развитию гипертонии. При недостатке минералокортикоидов реабсорбция натрия в канальцах почки уменьшается и организм теряет такое большое количество натрия, что возникают изменения внутренней среды, несовместные с жизнью, и через несколько дней после удаления коры надпочечников наступает смерть. Введением минералокортикоидов или больших количеств хлорида натрия можно поддержать жизнь животного, у которого удалены надпочечники. Поэтому минералокортикоиды образно называют гормонам сохраняющими жизнь.

Регуляция уровня минералокортикоидов в крови. Количество минералокортикоидов) выделяемых надпочечниками, находится в прямой зависимости от содержания натрия и калия в организме. Повышенное количество натрия в крови, перфузирующей изолированный надпочечник, тормозит секрецию альдостерона. Недостаток натрия в крови наоборот, вызывает повышение секреции альдостерона. Таким образом, ионы Nа+ регу- лируют интенсивность функции клеток клубочковой зоны надпочечников непосредственно. Ионы К+ также действуют непосредственно на клетки клубочковой зоны над почечников. Их влияние противоположно влиянию ионов Na+, а действие выражено слабее. АКТГ гипофиза, влияя на эту зону, также увеличивает секрецию альдостерона но эффект этот выражен слабее нежели влияние АКТГ на выработку глюкокортикоидов.

Количество выделяемого альдостерона зависит не только от содержания натрия в плазме крови и тканевой жидкости, но и от соотношения между концентрациями ионов натрия и калия. Доказательством этого служит тот факт, что усиление секреции альдостерона возникает не только при недостатке ионов натрия, но и при избыточном содержании ионов калия в крови, а угнетение секреции альдостерона наблюдается не только при введении натрия в кровь, но и при недостаточном содержании калия в крови.

Изменения объема циркулирующей крови регистрируются волюморецепторами (рецепторы объема) правого сердца. Возникающие в них импульсы влияют на функции гипоталамуса, выработку АКТГ и секрецию альдостерона. Увеличение объема циркули­рующей крови таким путем тормозит секрецию альдостерона. Это приводит к выведению Na+ (а вместе с ним и воды) с мочой, а следовательно, и к нормализации объема циркулирующей крови и количества жидкости в организме. Снижение объема циркули­рующей крови таким же путем вызывает противоположные сдвиги, т. е. увеличивает секрецию альдостерона. Это приводит к задержке Na+ и воды в организме. Изменения осмотического уровня плазмы крови через осморецепторы, гипоталамус и гипофиз также вызывает соответствующие изменения уровня секреции альдостерона, способствующие нормализации осмотического давления.

Глюкокортикоиды. Глюкокортикоиды (кортизон, гидрокортизон, кортикостерон) оказывают влияние на углеводный, белковый и жировой обмен. Наиболее активен из них кортизон. Свое название глюкокортикоиды получили из-за способности повышать уровень сахара в крови вследствие стимуляции образования глюкозы в печени. Полагают, что этот процесс осуществляется путем ускорения процессов дезаминирования аминокислот и превращения их безазотистых остатков в углеводы (глюконеогенез). Содержание гликогена в печени при этом может даже возрастать. Этим существенно отличают­ся Глюкокортикоиды от адреналина, при введении которого содержание глюкозы в крови увеличивается, но запас гликогена в печени уменьшается.

При введении глюкокортикоидов, в частности гидрокортизона, даже при достаточном белковом питании возникает отрицательный азотистый баланс, что указывает на преобладание распада белков над их синтезом. Выражением этого является усиленное выведение с мочой азотистых продуктов обмена веществ. Изменения белкового обмена под влиянием гидрокортизона в разных тканях различны: в лимфоидной ткани происходит усиленный распад белков, в мышцах синтез их угнетен, в печени же синтез белков и особенно ферментов ускорен.

Глюкокортикоиды влияют также на обмен жиров. Они усиливают мобилизацию жира из жировых депо и его использование в процессах энергетического обмена. Таким образом, эти гормоны оказывают многообразное влияние на метаболизм, изменяя как энергетические, так и пластические процессы.

Глюкокортикоиды возбуждают ЦНС, приводят к бессоннице, эйфории, общему возбуждению.

Глюкокортикоиды способствуют развитию мышечной слабости и атрофии скелетной мускулатуры, что связано с усилением распада мышечных белков, а также снижением уровня кальция в крови. Они тормозят рост, развитие и регенерацию костей скелета. Кортизон угнетает продукцию гиалуроновой кислоты и коллагена, тормозит пролифера­цию и активность фибробластов. Все это приводит к дистрофии и дряблости кожи, появлению морщин.

Кортизон повышает чувствительность сосудов мышц к действию сосудосуживающих агентов и снижает проницаемость эндотелия. В больших дозах глюкокортикоиды увеличивают сердечный выброс.

Отсутствие глюкокортикоидов не приводит к немедленной гибели организма. Однако при недостаточной секреции глюкокортикоидов понижается сопротивляемость организма различным вредным воздействиям, поэтому инфекции и другие патогенные факторы переносятся тяжело и нередко приводят к гибели.

Глюкокортикоиды ослабляют воспалительные и аллергические реакции. На этом основано клиническое применение глюкокортикоидов при хронической пневмонии, ревматизме и других забо­леваниях. Так как глюкокортикоиды угнетают развитие воспаления, их называют противовоспали­тельными гормонами. Минералокортикоиды, способствуя задержке натрия в организме и удержанию воды, усиливают явления отека тканей, возникающие при воспалении, а также некоторые другие его проявления. Поэтому минералокортикоиды называют провоспалительными гормонами.

Факторы, влияющие на интенсивность образования глюкокортикоидов. При боли, травме, кровопотере, перегревании, переохлаждении, некоторых отравлениях, инфек­ционных заболеваниях, тяжелых психических переживаниях выделение глюкокортикоидов усиливается. При данных состояниях рефлекторно усиливается секреция адреналина мозговым слоем надпочечников. Поступающий в кровь адреналин воздействует на гипо ­ таламус, вызывая усиление образования в некоторых его клетках полипептида — кортикотропинвысвобождающего фактора, способствующего образованию в передней доле гипофиза АКТГ. Этот гормон является фактором, стимулирующим выработку в надпо­чечнике глюкокортикоидов. При удалении гипофиза наступает атрофия пучковой зоны коры надпочечников и секреция глюкокортикоидов резко снижается.

Состояние, возникающее при действии ряда неблагоприятных факторов и ведущее к усилению секреции АКГГ, а следовательно, и глюкокортикоидов канадский патофизиолог Селье обозначил тер­мином «стресс». В развитии состояния стресса Селье различает три стадии или фазы: 1) фаза тревоги, когда начинают действовать неблагоприятные факторы и происходит усиленная секреция АКТГ и глюкокортикоидов; 2) фаза резистентности, когда повышенное количество глюкокортикои­дов, циркулирующих в крови, приводит к формированию повышенной устойчивости организма к неблагоприятным воздействиям; 3) фаза истощения, во время которой надпочечники перестают продуцировать достаточное количество глюкокортикоидов, являющихся, по Селье, защитными (адаптивными) гормонами, и состояние организма ухудшается.

Таким образом, можно отметить некоторую общность функционального значения внутренней секреции мозгового и коркового слоев надпочечника. Их гормоны обеспечи­вают усиление защитных реакций при чрезвычайных, угрожающих нормальному состоянию организма воздействиях — аварийных ситуациях. При этом мозговое вещест­во, выделяющее адреналин, способствует усилению активных поведенческих реакций организма, а корковое вещество, деятельность которого стимулируется через гипотала­мус тем же адреналином, выделяет гормоны, усиливающие внутренние факторы сопротивляемости организма.

Следует, однако, отметить, что повышение сопротивляемости организма зависит от очень многих факторов и не может быть всецело сведено только к процессам, которые стимулируются указанными гормонами.

Половые гормоны коры надпочечников. Половые гормоны коры надпочечников — андрогены и эстрогены — играют важную роль в развитии половых органов в детском возрасте, т. е. на том этапе онтогенеза, когда внутрисекреторная функция половых желез еще слабо выражена.

У людей после достижения половой зрелости роль этих гормонов невелика. Однако в старости, после прекращения внутрисекреторной функции половых желез, кора надпо­чечников становится вновь единственным источником секреции андрогенов и эстрогенов.

МЕСТО ОБРАЗОВАНИЯ ГОРМОНОВ ПОЛОВЫХ ЖЕЛЕЗ

При перевязке у самцов семенных канатиков происходит дегенерация семяобразующих трубочек семенников, которые заменяются соединительной тканью, а расгюложенные между ними скопления клеток интерстициальной ткани не дегенерируют и даже разрастаются. При этом у самцов сохраняются вторичные половые признаки. На основании подобных опытов считают, что мужской половой гормон тестостерон (а по новым данным, также и эстроген) образуется в интерстициальной ткани. По этой причине интерстициальную ткань семенников называют пубертатной железой (от лат. pubertas — возмужалость, зрелость). Согласно некоторым данным, эпителий семяобразующих трубочек также участвует в образовании андрогенов, среди которых наиболее активен упомянутый выше тестостерон.

В яичниках эстрогены (эстрон, эстриол, эстрадиол) образуются в зернистом слое фолликулов и граафовых пузырьков, а также в их внутренней оболочке. В структурах яичника образуются также андрогены.

Материалом, из которого синтезируются половые гормоны, служат холестерин и дезоксикортикостерон (образующийся в коре надпочечников).

В желтом теле яичника, которое развивается на месте лопнувшего пузырчатого яичникового фолликула (граафов пузырек) после его разрыва и выхода из него яйцеклетки, образуется гормон прогестерон, обеспечивающий нормальное протекание беременности.

ПОЛОВОЕ СОЗРЕВАНИЕ ЧЕЛОВЕКА

У человека процесс полового развития может быть разделен на 5 стадий: детскую, отроческую, юношескую, стадию половой зрелости и стадию угасания половых функций.

Детская стадия продолжается у мальчиков в среднем до 10 лет, у девочек — до 8 лет. В это время у мальчиков семяобразующие трубочки семенников слабо развиты, узкие и имеют только один слой малодифференцированных клеток герминативного эпителия; интерстициальная ткань мало развита. В яичниках девочек примордиальные, т. е. первичные, фолликулы, образовавшиеся еще в эмбриональной жизни, растут, но очень медленно. Количество фолликулов, имеющих оболочки, невелико, пузырчатые яичниковые фолликулы (граафовы пузырьки) отсутствуют. В моче мальчиков и девочек содержится очень небольшое и пр



Поделиться:


Последнее изменение этой страницы: 2016-08-26; просмотров: 338; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.136.19.203 (0.013 с.)