Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Мат. Ожидание и дисперсия суммы случайных величин. Мат ожидание произведения случайных величин.↑ ⇐ ПредыдущаяСтр 2 из 2 Содержание книги
Поиск на нашем сайте
M[X]=mx= M[Y]=my= (M[X], M[Y])-центр распределения. Пусть X и Y - случ. вел. С конечными мат. ожиданиями. Мат. ожидание их суммы равно сумме их мат. ожиданий. M[X+Y]= M[X]+M[Y] Пусть X и Y- взаимно независимые случ. вел с конечными мат. ожиданиями. Мат ожидание произведения XY равно произведению их мат. ожиданий. M[XY]= =M[X]*M[Y]. Это правило распространяется на любое конечное число взаимно независимых случ. величин. Заметим, то последнее равенство для зависимых случ. величин, вообще говоря, е выполняется. Пусть X и Y- случ. Вел с совместным распределением, задаваемым таблицей (1). Условное мат. ожидание случ. dел. X при условии, что Y принимает заданное значение Y = yj, вычисляется по формуле: M[X/Y=yj]= >0 Дисперсия суммы случайных величин: D[X+Y] z=X+Y => D[z]=M[(z-mz)2], а mz=mx+my D[z]= M[((X-mx)+(Y-my))2]= M[(X-mx)2]+2 M[(X-mx)(Y-my)]+ M[(Y-my)2]=D[X]+2cov(X,Y)+D[Y] Таким образом: D[X±Y]=D[X]+D[Y]±2cov(X,Y) Если X и Y независимые, то cov(X,Y)=0 => D[X±Y]=D[X]+D[Y] Рассмотрим D[aX±bY]=a2D[X]+b2D[Y]±2abcov(X,Y) Коэффициент корреляции как характеристика статистической связи. Некоррелированность и независимость случ. величин. В качестве меры линейной зависимости между случ. величинами X и Y используют коэффициент корреляции, вычисляемый по формуле Св-ва коэфиициента корреляции: 1. Док-во: рассмотрим систему 2-ух случ. вел: (X,Y) Проведем нормировку (стандартизацию), т.е. M[X]= mx D[X]=σx2 Xxнормиров= Нормированная величина – это тогда, когда M[Y]=my D[Y]= σy2 Yyнормиров= mч=0, а σx=1 Cov(Xx,Yy)=M[{ }]*M[{ }]= 2. Если X и Y – незав. случ. вел, то , причем обратное неверно 3.Если X и Y связаны линейной функциональной зависимостью: Y=aX+b, где a,b – const, a≠0,то Док-во: Т.к M[Y]=aM[X]+b=amx+b, то имеем cov(X,Y)=M[(X-mx)*(Y-my)]=M[(X-mx)(aX+b-amx-b)]=M[(X-mx)a(X-mx)]=aD[X] Вычислим дисперсию случ. вел. Y=aX+b D[Y]=D[aX+b]=a2D[X] Таким образом, коэффициент корреляции равен: Следовательно, =1, если a>1 и =-1, если a<0 Т.е коэффициент корреляции является показателем линейной зависимости, но если ρxy=0. это не значит,что между ними нет никакой связи, это значит, что нет линейной зависимости. Если коэффициент корреляции между случ. вел. X и Y равен 0, то говорят, что X и Y некоррелированны. Некоррелированность случ. вел X и Y означает только, что между ними нет линейной зависимости и не означает статистическую независимость случ. вел X и Y. Законы больших чисел и предельные теоремы. Теорема Бернулли, Чебышева, Муавра-Лапласа Теорема Чебышева и ее обобщение.
Если дисперсии n-независимых случайных величин (X1…Xn) ограничены одной и той же постоянной, то при неограниченном увеличении числа n среднее арифметическое случайных величин сходится по вероятности к среднему арифметическому их математических ожиданий. Док-во: По условию: M()= … M()= По первому неравенству Чебышева получаем: поскольку P>1, то: Вывод: при достаточно больших n выполнение рассматриваемого неравенства является событием практически достоверным, а неравенства противоположного смысла практически невозможно. Таким образом предел по вероятности следует понимать не как категорическое отверждение, а как утверждение, вероятность которого гарантируется с вероятностью близкой к 1 (при n->∞) Таким образом, при большом числе случайных величин практически достоверно, что их средняя случайная величина как угодна мало отличается от неслучаной – среднего математического ожидания, т.е. перестает быть случайной. Этим заключением обоснован выбор средней арифметической в качестве меры истинного значения мат. ожидания. Теорема Бернулли.
Пусть А – случайный исход некоторого экспериментов, P(A)=p – вероятность этого исхода. Предположим, что эксперимент повторяется n раз в неизменных условиях (т.е. вероятность Р(А)=р не изменяется при повторении экспериментов). Тогда относительная частота появление события А при n -> ∞ сходится по вероятности к р: , или где n – общее число исходов, m – число благоприятных исходов, p – вероятность появления случ. величины. Док-во: Пусть Причем , а . Вычислим математическое ожидание случайной величины : M[Xi] = 1*p + 0*q = p И математическое ожидание их среднего арифметического: Случайные величины , i=1…n по условию взаимно независимы, а их среднее арифметическое есть относительная частота появления события А в середине n экспериментов Теорема Бернулли дает математическое обоснование экспериментальным результатам, в которых наблюдается устойчивость частот при увеличении числа экспериментов. Устойчивость среднего арифметического можно объяснить тем, что случайное отклонения от среднего, неизбежные в каждом отдельном результате, в массе однородных результатов взаимно поглощаются, нивелируются, выравниваются. Вследствие этого средний результат фактически перестает быть случайным и может быть предсказан достаточно точно. Теорема Муавра-Лапласа. Пусть Х – случайная величина, имеющая биномиальное распределение. (q=1-p; n испытаний) Х – число успехов в n испытаниях по схеме Бернулли Х=0…n Введем величину Причем M[Xi]=1*p+0*q=p D[Xi]=M[Xi2]-p2=p-p2=p(1-p)=pq X = X1 + … + Xn (они все независимы и имеют одинаковое распределение) M[X] = M[X1 + … + Xn] = M[X1] + … + M[Xn] = np D[X] = D[X1 + … + Xn] = D[X1] + … + D[Xn] = npq Следовательно: X
Теорема Муавра-Лапласа позволяет количественно оценить разброс события А в некотором эксперименте, который может повторятся n раз в неизменных условиях.
|
||||
Последнее изменение этой страницы: 2016-08-26; просмотров: 396; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.117.103.185 (0.008 с.) |