Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Опыт 2. Измерение динамических характеристик ферромагнитных материалов осциллографическим методомСодержание книги
Поиск на нашем сайте
Динамическими характеристиками магнитных материалов называют характеристики, полученные в переменных магнитных полях. Динамические характеристики в значительной мере зависят не только от качества самого материала, но и от ряда других факторов: формы и размеров образца, формы кривой и частоты изменения намагничивающего поля и т. д. Поэтому динамические характеристики являются по существу характеристиками не материала, а конкретного образца и по ним можно судить о пригодности образца для конкретных условий намагничивания. К основным динамическим характеристикам магнитных материалов относят динамические петли гистерезиса и динамические кривые намагничивания. На рис. 5.7,а показано семейство петель гистерезиса, полученных при различных значениях максимальных напряжённостей магнитного поля. Петля гистерезиса, соответствующая насыщению материала, называется предельной динамической петлёй. В справочниках обычно приводят симметричные предельные петли гистерезиса для различных материалов. По предельной петле гистерезиса можно найти максимальное значение индукции Bm и напряжённости Hm, а также остаточную индукцию Br (при H=0) и коэрцитивную силу Hc, т.е. напряжённость поля, при которой B=0. Площадь петли гистерезиса пропорциональна энергии, затраченной на перемагничивание вещества и вихревые токи. Другая характеристика – основная динамическая кривая намагничивания представляет собой геометрическое место вершин симметричных петель гистерезиса и строится путём соединения вершин частных петель гистерезиса. По виду основной кривой намагничивания можно определить магнитные проницаемости для различных значений H. Кривая относительной магнитной проницаемости μr = B/μ0H, где μ0 = 4 π 10–7 Гн/м является магнитной постоянной, показана на рис. 5.7,б. Начальный участок кривой соответствует области начальной магнитной проницаемости , которая графически определяется как tg α н с учётом масштабов по осям. Аналогично находится максимальная магнитная проницаемость μ r m по tg α m.
По виду основной кривой намагничивания и петли гистерезиса, а также по значениям Bm, Hm, Br, Hc можно судить о свойствах данного магнитного материала и области его практического применения. Материалы с узкой петлёй гистерезиса и большим значением Br, являющиеся магнитомягкими, целесообразно применять, например, для изготовления магнитопроводов измерительных механизмов, у которых рабочее магнитное поле создаётся измеряемым током. Это уменьшит погрешности из-за гистерезиса и нелинейности кривой намагничивания (ферродинамические, индукционные приборы). Материалы с широкой петлёй гистерезиса, большой коэрцитивной силой Hc относятся к магнитотвёрдым и используются для изготовления постоянных магнитов. Основные параметры магнитомягких материалов, наиболее часто используемых в технике, приведены в табл. 5.2. Осциллографический метод исследования магнитных материалов на переменном токе удобен тем, что позволяет визуально наблюдать динамические петли, а также производить измерение магнитных характеристик в широком диапазоне частот.
Таблица 5.2
Схема установки для определения магнитных характеристик осциллографическим методом приведена на рис.5.8.
Установка состоит из осциллографа, на вход вертикального отклонения которого Y подано напряжение с выхода интегрирующей цепочки, а на вход горизонтального отклонения Х – напряжение, снимаемое с сопротивления Rэ. Испытуемый образец кольцевой формы содержит намагничивающую и измерительную обмотки. В цепь намагничивающей обмотки включён амперметр и сопротивление Rэ, к зажимам измерительной обмотки – интегрирующая цепочка RиCи. Автотрансформатор обеспечивает регулирование тока через намагничивающую обмотку. На Х вход осциллографа подаётся напряжение UHt, пропорциональное намагничивающему току (по закону Ома): , а ток iнам пропорционален напряжённости магнитного поля (по закону полного тока): , где l ср – средняя длина магнитной линии образца. Таким образом, мгновенное значение напряжения UHt пропорционально мгновенному значению напряжённости магнитного поля образца H t: . В измерительной обмотке наводится ЭДС, пропорциональная производной от индукции по времени , где S – площадь поперечного сечения образца. Выходное напряжение интегрирующей цепочки оказывается пропорциональным мгновенному значению индукции , где и = Rи Cи – постоянная времени интегрирования. Поэтому электронный луч осциллографа опишет на экране кривую, являющуюся динамической петлёй гистерезиса. Порядок выполнения опыта 1 Установить переключатель «Образец», расположенный на макете, в положение, указанное преподавателем. 2 Подключить выходные клеммы ЛАТРа к клеммам «ЛАТР», расположенным на макете. Установить ручку ЛАТРа в положение, соответствующее нулевому выходному напряжению. 3 Подключить гнёзда Y и Х макета к соответствующим входам осциллографа. 4 Подключить сетевые клеммы ЛАТРа к сети напряжением 220В и установить ручку ЛАТРа в среднее положение (100–150В). 5 Совместить центр петли (рис.5.7,а) с центром экрана ЭЛТ. Вращением ручки ЛАТРа и выбором коэффициента отклонения добиться изображения предельной петли так, чтобы она занимала основную площадь экрана. 6 Измерить расстояния 2 l y и 2 l x (рис. 5.7,а) предельной петли гистерезиса и рассчитать остаточную индукцию Br (в теслах) и коэрцитивную силу Hc (в А/м) соответственно по формулам: , Значения l x и l y определяются делением измеренных значений 2 l x и 2 l y пополам. Значения постоянной времени интегратора и, чисел витков W1 намагничивающей обмотки и W2 измерительной обмотки, средней длины l ср и площади сечения S образца, значение эталонного сопротивления R1=Rэ даны в таблице, расположенной на рабочем месте. Масштабы my и mx определяются положением переключателей коэффициентов отклонения и развёртки на передней панели осциллографа. Результаты измерений и расчётов занести в табл. 5.3. Таблица 5.3
7 Снять точки динамической кривой намагничивания, для чего, уменьшая напряжение ЛАТРом, измерить удвоенные координаты 2 l xi и 2 l yi 8–10 вершин (Hmi, Bmi) частных динамических петель гистерезиса (рис.5.7,а). Переключателями осциллографа устанавливать размер частных петель не менее 2 см по вертикали и 4 см по горизонтали. Рассчитать максимальную индукцию Вmi и максимальную напряжённость Hmi для каждой из 8–10 частных петель по формулам: , . Коэффициенты mxi и myi определяются так же, как и в пункте 6. Относительную магнитную проницаемость рассчитать по формуле: Результаты измерений и расчётов занести в табл.5.4 По результатам табл. 5.4 построить динамическую кривую намагничивания Bm = F(Hm) и зависимость μr = f(Hm). Таблица 5.4
Содержание отчёта В отчёте привести схемы рис.5.1, 5.8, табл.5.1, 5.3, 5.4 и графики Bm = F(Hm), μr = f(Hm). Контрольные вопросы 1 Для каких целей применяется электронный осциллограф? 2 Из каких блоков состоит осциллограф и какие функции выполняют эти блоки? 3 Объясните, на каком принципе основана работа генератора развёртки. 4 В чём заключается различие между непрерывной и ждущей развёрткой? 5 Для чего нужна синхронизация и как она осуществляется в осциллографе? 6 Какие виды синхронизации существуют в осциллографах? 7 Назовите электроды ЭЛТ и объясните их назначение. 8 Назовите основные параметры импульсных периодических последовательностей. Как они измеряются осциллографом? 9 Какова сущность осциллографического метода измерения динамических характеристик магнитных материалов? 10 Как при осциллографическом методе определяется предельная петля гистерезиса и её параметры? 11 Каким образом при осциллографическом методе определяется магнитная проницаемость образца? Список литературы 1 Основы метрологии и электрические измерения / Под ред. Е.М.Душина. – Л.: Энергоатомиздат, 1987. – C. 175 – 183, 441 – 446. 2 Электрические измерения / Под ред. В.Н. Малиновского. – М.: Энергоиздат, 1983. – C. 200 – 208, 330 – 332, 343 – 345. 3 Атамалян Э.Г. Приборы и методы измерения электрических величин. – М.: Высш. школа, 1982. – C. 63 – 83.
Лабораторная работа 6
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Последнее изменение этой страницы: 2016-08-16; просмотров: 245; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.128.168.219 (0.007 с.) |