Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Опыт 2. Измерение динамических характеристик ферромагнитных материалов осциллографическим методом

Поиск

Динамическими характеристиками магнитных материалов называют характеристики, полученные в переменных магнитных полях. Динамические характеристики в значительной мере зависят не только от качества самого материала, но и от ряда других факторов: формы и размеров образца, формы кривой и частоты изменения намагничивающего поля и т. д. Поэтому динамические характеристики являются по существу характеристиками не материала, а конкретного образца и по ним можно судить о пригодности образца для конкретных условий намагничивания. К основным динамическим характеристикам магнитных материалов относят динамические петли гистерезиса и динамические кривые намагничивания.

На рис. 5.7,а показано семейство петель гистерезиса, полученных при различных значениях максимальных напряжённостей магнитного поля. Петля гистерезиса, соответствующая насыщению материала, называется предельной динамической петлёй. В справочниках обычно приводят симметричные предельные петли гистерезиса для различных материалов. По предельной петле гистерезиса можно найти максимальное значение индукции Bm и напряжённости Hm, а также остаточную индукцию Br (при H=0) и коэрцитивную силу Hc, т.е. напряжённость поля, при которой B=0.

Площадь петли гистерезиса пропорциональна энергии, затраченной на перемагничивание вещества и вихревые токи.

Другая характеристика – основная динамическая кривая намагничивания представляет собой геометрическое место вершин симметричных петель гистерезиса и строится путём соединения вершин частных петель гистерезиса. По виду основной кривой намагничивания можно определить магнитные проницаемости для различных значений H.

Кривая относительной магнитной проницаемости μr = B/μ0H, где μ0 = 4 π 10–7 Гн/м является магнитной постоянной, показана на рис. 5.7,б.

Начальный участок кривой соответствует области начальной

магнитной проницаемости , которая графически определяется как tg α н с учётом масштабов по осям. Аналогично находится максимальная магнитная проницаемость μ r m по tg α m.

 

 

 


 

 

По виду основной кривой намагничивания и петли гистерезиса, а также по значениям Bm, Hm, Br, Hc можно судить о свойствах данного магнитного материала и области его практического применения. Материалы с узкой петлёй гистерезиса и большим значением Br, являющиеся магнитомягкими, целесообразно применять, например, для изготовления магнитопроводов измерительных механизмов, у которых рабочее магнитное поле создаётся измеряемым током. Это уменьшит погрешности из-за гистерезиса и нелинейности кривой намагничивания (ферродинамические, индукционные приборы). Материалы с широкой петлёй гистерезиса, большой коэрцитивной силой Hc относятся к магнитотвёрдым и используются для изготовления постоянных магнитов.

Основные параметры магнитомягких материалов, наиболее часто используемых в технике, приведены в табл. 5.2.

Осциллографический метод исследования магнитных материалов на переменном токе удобен тем, что позволяет визуально наблюдать динамические петли, а также производить измерение магнитных характеристик в широком диапазоне частот.

 

Таблица 5.2

Материал Bm, Тл Hm, А/М Br, Тл Hc, А/М μr нач μr макс
Электро-техническая сталь 1,4÷1,8 70÷350 1,1÷1,6 10÷50 250÷800 5000÷33000
Железо-никелиевые сплавы 0,4÷1,6 4÷200 0,3÷1,4 0,5÷30 1700÷300000 160000÷4450000
Магнитно-мягкие ферриты 0,1÷0,4 30÷10000 0,05÷0,3 4÷2000 5÷35000 100÷30000

Схема установки для определения магнитных характеристик осциллографическим методом приведена на рис.5.8.

 


Установка состоит из осциллографа, на вход вертикального отклонения которого Y подано напряжение с выхода интегрирующей цепочки, а на вход горизонтального отклонения Х – напряжение, снимаемое с сопротивления Rэ. Испытуемый образец кольцевой формы содержит намагничивающую и измерительную обмотки. В цепь намагничивающей обмотки включён амперметр и сопротивление Rэ, к зажимам измерительной обмотки – интегрирующая цепочка RиCи. Автотрансформатор обеспечивает регулирование тока через намагничивающую обмотку. На Х вход осциллографа подаётся напряжение UHt, пропорциональное намагничивающему току (по закону Ома):

,

а ток iнам пропорционален напряжённости магнитного поля (по закону полного тока):

,

где l ср – средняя длина магнитной линии образца.

Таким образом, мгновенное значение напряжения UHt пропорционально мгновенному значению напряжённости магнитного поля образца H t:

.

В измерительной обмотке наводится ЭДС, пропорциональная производной от индукции по времени

,

где S – площадь поперечного сечения образца.

Выходное напряжение интегрирующей цепочки оказывается пропорциональным мгновенному значению индукции

,

где и = Rи Cи – постоянная времени интегрирования.

Поэтому электронный луч осциллографа опишет на экране кривую, являющуюся динамической петлёй гистерезиса.

Порядок выполнения опыта

1 Установить переключатель «Образец», расположенный на макете, в положение, указанное преподавателем.

2 Подключить выходные клеммы ЛАТРа к клеммам «ЛАТР», расположенным на макете. Установить ручку ЛАТРа в положение, соответствующее нулевому выходному напряжению.

3 Подключить гнёзда Y и Х макета к соответствующим входам осциллографа.

4 Подключить сетевые клеммы ЛАТРа к сети напряжением 220В и установить ручку ЛАТРа в среднее положение (100–150В).

5 Совместить центр петли (рис.5.7,а) с центром экрана ЭЛТ. Вращением ручки ЛАТРа и выбором коэффициента отклонения добиться изображения предельной петли так, чтобы она занимала основную площадь экрана.

6 Измерить расстояния 2 l y и 2 l x (рис. 5.7,а) предельной петли гистерезиса и рассчитать остаточную индукцию Br (в теслах) и коэрцитивную силу Hc (в А/м) соответственно по формулам:

,

Значения l x и l y определяются делением измеренных значений 2 l x и 2 l y пополам. Значения постоянной времени интегратора и, чисел витков W1 намагничивающей обмотки и W2 измерительной обмотки, средней длины l ср и площади сечения S образца, значение эталонного сопротивления R1=Rэ даны в таблице, расположенной на рабочем месте. Масштабы my и mx определяются положением переключателей коэффициентов отклонения и развёртки на передней панели осциллографа. Результаты измерений и расчётов занести в табл. 5.3.

Таблица 5.3

l y, см l x, см my, В/см mx, В/см Br, Тл Hc, А/м
           

7 Снять точки динамической кривой намагничивания, для чего, уменьшая напряжение ЛАТРом, измерить удвоенные координаты 2 l xi и 2 l yi 8–10 вершин (Hmi, Bmi) частных динамических петель гистерезиса (рис.5.7,а). Переключателями осциллографа устанавливать размер частных петель не менее 2 см по вертикали и 4 см по горизонтали. Рассчитать максимальную индукцию Вmi и максимальную напряжённость Hmi для каждой из 8–10 частных петель по формулам:

, .

Коэффициенты mxi и myi определяются так же, как и в пункте 6.

Относительную магнитную проницаемость рассчитать по формуле:

Результаты измерений и расчётов занести в табл.5.4

По результатам табл. 5.4 построить динамическую кривую намагничивания Bm = F(Hm) и зависимость μr = f(Hm).

Таблица 5.4

№ п/п l,yi см l xi, см myi, В/см mxi, В/см Bmi, Тл Hmi, А/м μr
               
               
               
               
               
               
               
               
               
               

Содержание отчёта

В отчёте привести схемы рис.5.1, 5.8, табл.5.1, 5.3, 5.4 и графики Bm = F(Hm), μr = f(Hm).

Контрольные вопросы

1 Для каких целей применяется электронный осциллограф?

2 Из каких блоков состоит осциллограф и какие функции выполняют эти блоки?

3 Объясните, на каком принципе основана работа генератора развёртки.

4 В чём заключается различие между непрерывной и ждущей развёрткой?

5 Для чего нужна синхронизация и как она осуществляется в осциллографе?

6 Какие виды синхронизации существуют в осциллографах?

7 Назовите электроды ЭЛТ и объясните их назначение.

8 Назовите основные параметры импульсных периодических последовательностей. Как они измеряются осциллографом?

9 Какова сущность осциллографического метода измерения динамических характеристик магнитных материалов?

10 Как при осциллографическом методе определяется предельная петля гистерезиса и её параметры?

11 Каким образом при осциллографическом методе определяется магнитная проницаемость образца?

Список литературы

1 Основы метрологии и электрические измерения / Под ред. Е.М.Душина. – Л.: Энергоатомиздат, 1987. – C. 175 – 183, 441 – 446.

2 Электрические измерения / Под ред. В.Н. Малиновского. – М.: Энергоиздат, 1983. – C. 200 – 208, 330 – 332, 343 – 345.

3 Атамалян Э.Г. Приборы и методы измерения электрических величин. – М.: Высш. школа, 1982. – C. 63 – 83.

 

Лабораторная работа 6



Поделиться:


Последнее изменение этой страницы: 2016-08-16; просмотров: 245; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.21.46.68 (0.007 с.)