Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Св-ва информации: запоминаемость, передаваемость, вопроизводимость, преобразуемость, стираемостьСодержание книги
Поиск на нашем сайте
Запоминаемость — информацию можно хранить, используя некоторую физическую среду и процессы этой среды. Передаваемость — информация может быть передана с помощью каналов связи (в том числе с помехами). Это свойство хорошо исследовано в рамках теории информации Клода Шеннона. В данном случае имеется ввиду способность информации к передаче другой макроскопической системой и при этом сохранение тождественности самой себе. Воспроизводимость — информация не изменяется при создании копии информации. Если передаваемость означает, что не следует считать существенными пространственные отношения между частями системы, между которыми передается информация, то воспроизводимость характеризует неиссякаемость и неистощимость информации, т.е. что при воспроизведении, информация остается тождественной самой себе. Преобразуемость — информация может менять способ и форму своего существования. В общем случае количество информации в процессах преобразования меняется, но возрастать не может. Стираемость — информация имеет такой вид преобразования, при котором ее количество уменьшается и становится равным нулю.
Кубит. Квантовые вычисления. Квантовый компьютер Кубит — квантовый разряд или наименьший элемент для хранения информации в квантовом компьютере. Информация в квантовом компьютере кодируется в квантовых битах или кубитах. Эта единица не двоична, а скорее четверична по своей природе. Кубит может существовать не только в состоянии, соответствующем логическим 0 или 1, как классический бит, но также в состояниях, соответствующих смесли или суперпозиции этих классических состояний. Другими словами, кубит может существовать как ноль, как единица, и как одновременно 0 и 1. Упрощённая схема вычисления на квантовом компьютере выглядит так: берется система кубитов, на которой записывается начальное состояние. Затем состояние системы или её подсистем изменяется посредством унитарных преобразований, выполняющих те или иные логические операции. В конце измеряется значение, и это результат работы компьютера. Роль проводов классического компьютера играют кубиты, а роль логических блоков классического компьютера играют унитарные преобразования. Такая концепция квантового процессора и квантовых логических вентилей была предложена в 1989 году Д. Дейчем. Квантовый компьютер — это гипотетическое вычислительное устройство, существенно использующее при работе квантовомеханические эффекты, такие как квантовая суперпозиция и квантовый параллелизм. Предполагается, что это позволит преодолеть некоторые ограничения классических компьютеров. Полномасштабный квантовый компьютер является пока гипотетическим устройством, сама возможность построения которого связана с серьезным развитием квантовой теории в области многих частиц и сложных экспериментов.
Системы счисления. позиционные и непозиционные системы счисления Система счисления — принятый способ записи чисел и сопоставления этим записям реальных значений. Все системы счисления можно разделить на два класса: позиционные и непозиционные. Для записи чисел в различных системах счисления используется некоторое количество отличных друг от друга знаков. Число таких знаков в позиционной системе счисления называется основанием системы счисления. Отметим, что кроме рассмотренных выше позиционных систем счисления существуют такие, в которых значение знака не зависит от того места, которое ОН занимает в числе. Такие системы счисления называются непозиционными. Паи более известным примером непозиционной системы является римская. В ЭТОЙ системе используется 7 знаков (I, V, X, L, С, D, М), которые соответствуют следующим величинам: I (1) V (5) X (10) L (50) С (100) D (500) М (1000) Например: III (три), LIX (пятьдесят девять), DLV (пятьсот пятьдесят пять). Недостатком непозиционных систем, из-за которых они представляют лишь, исторический интерес, является отсутствие формальных правил записи чисел и, соответственно, арифметических действий над ними (хотя по традиции римскими числами часто пользуются при нумерации глав в книгах, веков в истории и др.). При работе с компьютерами приходится параллельно использовать несколько позиционных систем счисления (чаще всего двоичную, десятичную и шестнаднатеричную), поэтому большое практическое значение имеют процедуры перевода чисел из одной системы счисления в другую.
11. двоичная система счисления. Значение в вычислительной технике. Преобразование чисел с разными основаниями Двоичная система счисления — это позиционная система счисления с основанием 2. В этой системе счисления, числа записываются с помощью двух символов (0 и 1). Компьютеры используют двоичную систему потому, что она имеет ряд преимуществ перед другими системами: *для ее реализации нужны технические устройства с двумя устойчивыми состояниями (есть ток — нет тока, намагничен — не намагничен и т.п.), *представление информации посредством только двух состояний надежно и помехоустойчиво; * возможно применение аппарата булевой алгебры для выполнения логических преобразований информации; *двоичная арифметика намного проще десятичной. Недостаток двоичной системы — быстрый рост числа разрядов, необходимых для записи чисел.
Для перевода чисел в десятичную систему счисления надо записать исходное число в развернутой форме и вычислить значение полученного выражения в десятичной системе счисления. Для перевода числа из десятичной системы счисления в двоичную нужно разложить десятичное число на слагаемые, представляющие собой степени числа 2.
Буква. Абстрактный алфавит. Код. Кодирование и декодирование Буква как понятие, а не как символ характеризуется следующими свойствами: самотождественность: а=а; дискретность: а всегда отличается от в; финитность: буква всегда принадлежит конечному множеству – алфавиту; толерантность (терпение): буква может быть связана с любой смысловой единицей.
абстрактный алфавит. Информация передается в виде сообщений. Дискретная информация записывается с помощью некоторого конечного набора знаков, которые будем называть буквами, не вкладывая в это слово привычного ограниченного значения (типа "русские буквы” или "латинские буквы”). Буква в данном расширенном понимании – любой из знаков, которые некоторым соглашением установлены для общения. Например, при привычной передаче сообщений на русском языке такими знаками будут русские буквы – прописные и строчные, знаки препинания, пробел; если в тексте есть числа – то и цифры. Вообще, буквой будем называть элемент некоторого конечного множества (набора) отличных друг от друга знаков. Множество знаков, в котором определен их порядок, назовем алфавитом (общеизвестен порядок знаков в русском алфавите: А, Б,..., Я). (Алфавит Морзе, Алфавит клавиатурных символов ПЭВМ IBM, Алфавит арабских цифр, Алфавит языка блок-схем изображения алгоритмов и др.) Кодирование и декодирование. В канале связи сообщение, составленное из символов (букв) одного алфавита, может преобразовываться в сообщение из символов (букв) другого алфавита. Правило, описывающее однозначное соответствие букв алфавитов при таком преобразовании, называют кодом. Саму процедуру преобразования сообщения называют перекодировкой. Подобное преобразование сообщения может осуществляться в момент поступления сообщения от источника в канал связи (кодирование) и в момент приема сообщения получателем (декодирование). Устройства, обеспечивающие кодирование и декодирование, будем называть соответственно кодировщиком и декодировщиком. Источник. Кодировщик. Сообщение. Помехи. Декодеровщик. Приемник. ASCII. Unicode. Источник – это устройство, которое передает информацию. Кодировщик - Устройства, обеспечивающие кодирование. Помехи – это модель шумов, помех и других сигналов, заглушающих основной сигнал. Источники помех могут быть внешними, например, так называемые "наводки" от мощных потребителей электричества или атмосферных явлений, приводящие к появлению нарушений в радиосвязи; одновременное действие нескольких близко расположенных однотипных источников (одновременный разговор нескольких человек). К помехам могут приводить и внутренние особенности данного канала, например, физические неоднородности носителя; паразитные явления в шинах. Если уровень помех оказывается соизмерим с интенсивностью несущего сигнала, то передача информации по данному каналу оказывается вообще невозможной. Декодировщик – это прибор, который принимает закодированные единицы информации, раскодирует и пишет в буфер для приемника. Приемник – это устройство, принимающее информацию от Источника.
(Другим способом защиты от помех является использование специальных методов кодирования информации, о чем речь пойдет ниже. После прохождения вторичного сообщения по каналу связи оно попадает в приемное устройство, где одновременно преобразуется в форму, необходимую для дальнейшей интерпретации. Если перед передачей применялось кодирование, после приема вторичное сообщение направляется в декодер (ДК) и лишь затем – к получателю (потребителю) информации. При этом декодер может быть совмещен с преобразователем (например, телеграфный аппарат или компьютер) или с приемником информации (радист, принимающий сигналы азбуки Морзе и интерпретирующий их)). ASCII (англ. American Standard Code for Information Interchange) — американская стандартная кодировочная таблица для печатных символов и некоторых специальных кодов. ASCII представляет собой кодировку для представления десятичных цифр, латинского и национального алфавитов, знаков препинания и управляющих символов. Изначально разработанная как 7-битная, с широким распространением 8-битного байта ASCII стала восприниматься как половина 8-битной. В компьютерах обычно используют расширения ASCII с задействованной второй половиной байта (например КОИ-8). Юнико́д (англ. Unicode) — стандарт кодирования символов, позволяющий представить знаки практически всех письменных языков.Стандарт предложен в 1991 году некоммерческой организацией «Консорциум Юникода» Применение этого стандарта позволяет закодировать очень большое число символов из разных письменностей: в документах Unicode могут соседствовать китайские иероглифы, математические символы, буквы греческого алфавита, латиницы и кириллицы, при этом становится ненужным переключение кодовых страниц.
|
||||
Последнее изменение этой страницы: 2016-08-16; просмотров: 2123; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.144.31.17 (0.011 с.) |