Кинематика материальной точки. Основные характеристики движения. Нормальное и тангенциальное ускорения мат. точки. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Кинематика материальной точки. Основные характеристики движения. Нормальное и тангенциальное ускорения мат. точки.



Механика.

Кинематика материальной точки. Основные характеристики движения. Нормальное и тангенциальное ускорения мат. точки.

Материальная точка – тело, размерами которого можно пренебречь в условиях данной задачи. Кинематика точки — раздел кинематики, изучающий математическое описание движения материальных точек. Основной задачей кинематики является описание движения при помощи математического аппарата без выяснения причин, вызывающих это движение. Движение любого объекта в кинематике изучают по отношению к некоторой системе отсчета, включающей: тело отсчета, систему измерения положения тела в пространстве (систему координат), прибор для измерения времени (часы).

Положение точки определяется набором обобщенных координат — упорядоченным набором числовых величин, полностью описывающих положение тела. В самом простом случае это координаты точки (радиус-вектора) в выбранной системе координат.

Основные характеристики движения.

траектория - линия, вдоль которой движется материальная точка;

пройденный путь - расстояние, пройденное точкой по е. траектории;

перемещение - вектор, направленный от положения материальной точки в начальный момент времени наблюдения к е. положению в конце промежутка времени наблюдения;

скорость - вектор, характеризующий направление и быстроту перемещения точки;

ускорение - вектор, характеризующий направление и быстроту изменения скорости точки относительно тела отсчета.

Закон независимости движений: если материальная точка участвует в нескольких движениях, то е. перемещение равно векторной сумме перемещений, а скорость - векторной сумме скоростей.

Ускорение, производная скорости по времени — векторная величина, показывающая, насколько изменяется вектор скорости точки (тела) при её движении за единицу времени (т.е. ускорение учитывает не только изменение величины скорости, но и её направления). Тангенциальное ускорение — направлено по касательной к траектории. Характеризует изменение скорости по модулю. Нормальное ускорение — возникает (не равно нулю) всегда при движении точки по окружности (конечного радиуса).

Является составляющей вектора ускорения a, перпендикулярной вектору мгновенной скорости. Вектор нормального ускорения всегда направлен к центру окружности.

 

Вращение. Связь угловых и линейных характеристик движения.

Вращательное движение — вид механического движения. При вращательном движении абсолютно твёрдого тела его точки описывают окружности, расположенные в параллельных плоскостях. Центры всех окружностей лежат при этом на одной прямой, перпендикулярной к плоскостям окружностей и называемой осью вращения. Ось вращения может располагаться внутри тела и за его пределами. Ось вращения в данной системе отсчёта может быть как подвижной, так и неподвижной.

 

3.Законы Ньютона. Принцип относительности Галилея. Инвариантность законов механики.

Первый закон Ньютона постулирует наличие такого явления, как инерция тел. Поэтому он также известен как Закон инерции. Инерция — это явление сохранения телом скорости движения (и по величине, и по направлению), когда на тело не действуют никакие силы или векторная сумма всех действующих сил (то есть равнодействующая) равна нулю.

Существуют такие системы отсчёта, называемые инерциальными, относительно которых свободная материальная точка сохраняет величину и направление своей скорости неограниченно долго.

Второй закон Ньютона — дифференциальный закон движения, описывающий взаимосвязь между приложенной к материальной точке силой и получающимся от этого ускорением этой точки.

В инерциальной системе отсчета ускорение, которое получает материальная точка, прямо пропорционально равнодействующей всех приложенных к ней сил и обратно пропорционально её массе.

Третий закон объясняет, что происходит с двумя взаимодействующими телами.

Материальные точки попарно действуют друг на друга с силами, имеющими одинаковую природу, направленными вдоль прямой, соединяющей эти точки, равными по модулю и противоположными по направлению:

Принцип Галилея.

Законы механики не зависят от того, в какой из инерциальных систем отсчета мы их исследуем, не зависят от выбора в качестве рабочей какой-то конкретной из инерциальных систем отсчета. Также — поэтому — не зависит от такого выбора системы отсчета наблюдаемое движение тел (учитывая, конечно, начальные скорости). Это утверждение известно как принцип относительности Галилея.

Иным образом этот принцип формулируется (следуя Галилею) так: если в двух замкнутых лабораториях, одна из которых равномерно прямолинейно (и поступательно) движется относительно другой, провести одинаковый механический эксперимент, результат будет одинаковым.

Инвариант — физическая величина, значение которой в некотором физическом процессе не изменяется с течением времени. Примеры: энергия, компоненты импульса и момента импульса в замкнутых системах.

Также инвариантами называются величины, независимые от условий наблюдения, в особенности — от системы отсчета — например интервал в теории относительности инвариантен в этом смысле. Промежуток времени между двумя событиями, а также расстояние между ними (местами событий) для наблюдателей, движущихся в различных направлениях с разными скоростями, будут разными, однако интервал между этими событиями для всех наблюдателей будет один. К этой же категории относится, например скорость света в вакууме. Такие величины, в зависимости от класса систем отсчета, при переходе между которыми сохраняется инвариантность данной величины, называют лоренц-инвариантными (инвариантами группы Лоренца) или инвариантами группы общекоординатных преобразований (рассматриваемыми в общей теории относительности); для ньютоновской физики может иметь смысл также рассматривать инвариантность относительно преобразований Галилея (инвариантными относительно таких преобразований являются компоненты ускорения и силы).

 

Законы Кеплера. Закон всемирного тяготения. Гравитационная и инертная масса.

Первый закон Кеплера (закон эллипсов).

Каждая планета Солнечной системы обращается по эллипсу, в одном из фокусов которого находится Солнце.

Форма эллипса и степень его сходства с окружностью характеризуется отношением е =с /а, где c — расстояние от центра эллипса до его фокуса (половина межфокусного расстояния), a — большая полуось. Величина e называется эксцентриситетом эллипса. При c = 0 и e = 0 эллипс превращается в окружность.

Второй закон Кеплера (закон площадей)

Каждая планета движется в плоскости, проходящей через центр Солнца, причём за равные промежутки времени радиус-вектор, соединяющий Солнце и планету, описывает равные площади.

Третий закон Кеплера (гармонический закон)

Квадраты периодов обращения планет вокруг Солнца относятся как кубы больших полуосей орбит планет. Справедливо не только для планет, но и для их спутников.

Закон всемирного тяготения. сила гравитационного притяжения между двумя материальными точками массы m1 и m2, разделёнными расстоянием R, пропорциональна обеим массам и обратно пропорциональна квадрату расстояния между ними.

F =G * m1 * m2/R^2.

Гравитационная масса показывает, с какой силой тело взаимодействует с внешними гравитационными полями.

эта масса фигурирует в законе всемирного тяготения

Инертная масса, которая характеризует меру инертности тел и фигурирует во втором законе Ньютона.

Гравитационная и инертная масса равны друг другу (практически с гигантской точностью, а в большинстве физических теорий — точно), поэтому в большинстве случаев просто говорят о массе, не уточняя, какую из них имеют в виду.

 

Законы сохранения.

Законы сохранения — фундаментальные физические законы, согласно которым при определённых условиях некоторые измеримые физические величины, характеризующие замкнутую физическую систему, не изменяются с течением времени.

Некоторые из законов сохранения выполняются всегда и при всех условиях (например, законы сохранения энергии, импульса, момента импульса, электрического заряда), или, во всяком случае, никогда не наблюдались процессы, противоречащие этим законам. Другие законы являются лишь приближёнными и выполняющимися при определённых условиях (например, закон сохранения массы выполняется в нерелятивистском приближении; закон сохранения чётности выполняется для сильного и электромагнитного взаимодействия, но нарушается в слабом взаимодействии).

Закон сохранения энергии — фундаментальный закон природы, установленный эмпирически и заключающийся в том, что энергия изолированной (замкнутой) физической системы сохраняется с течением времени. Другими словами, энергия не может возникнуть из ничего и не может исчезнуть в никуда, она может только переходить из одной формы в другую.

Закон сохранения импульса (Закон сохранения количества движения) утверждает, что сумма импульсов всех тел (или частиц) замкнутой системы есть величина постоянная.

Закон сохранения момента импульса (закон сохранения углового момента) — векторная сумма всех моментов импульса относительно любой оси для замкнутой системы остается постоянной в случае равновесия системы.

Закон сохранения массы — исторический закон физики, согласно которому масса как мера количества вещества сохраняется при всех природных процессах, то есть несотворима и неуничтожима. С точки зрения современной физики, этот закон неверен. Например, при радиоактивном распаде совокупная масса вещества уменьшается.

Закон сохранения электрического заряда гласит, что алгебраическая сумма зарядов электрически замкнутой системы сохраняется.

Закон сохранения лептонного числа

Закон сохранения барионного числа

Закон сохранения чётности

 

Уравнение Бернулли.

Закон Бернулли является следствием закона сохранения энергии для стационарного потока идеальной (то есть без внутреннего трения) несжимаемой жидкости:

, где

плотность жидкости -

скорость потока - v

высота, на кот. находится рассматриваемый элемент жидкости- h

давление в точке пространства, где расположен центр массы рассматриваемого элемента жидкости - p

ускорение свободного падения – g.

 

Волны. Уравнения волны.

Волна — изменение состояния среды (возмущение), распространяющееся в этой среде и переносящее с собой энергию. Другими словами: «…волнами или волной называют изменяющееся со временем пространственное чередование максимумов и минимумов любой физической величины, например, плотности вещества, напряжённости электрического поля, температуры".Перенос энергии — принципиальное отличие волн от колебаний.

В зависимости от физической среды, в которой распространяются волны, их свойства различны и поэтому различают:

-волны на поверхности жидкости;

-упругие волны (звук, сейсмические волны);

-объёмные волны (распространяющиеся в толще среды);

-электромагнитные волны (радиоволны, свет, рентгеновские лучи);

-гравитационные волны;

-волны в плазме.

По отношению к направлению колебаний частиц среды

-продольные волны (волны сжатия, P-волны) — частицы среды колеблются параллельно (по) направлению распространения волны (как, например, в случае распространения звука);

-поперечные волны (волны сдвига, S-волны) — частицы среды колеблются перпендикулярно направлению распространения волны (электромагнитные волны, волны на поверхностях разделения сред);

-волны смешанного типа.

По виду фронта волны(поверхности равных фаз)

-плоская волна — плоскости фаз перпендикулярны направлению распространения волны и параллельны друг другу;

-сферическая волна — поверхностью фаз является сфера;

-цилиндрическая волна — поверхность фаз напоминает цилиндр.

Изменение колеблющейся величины u для гармонически распространяющейся волны в начале координат описывается формулой:

или

где A — амплитуда, t — время, а T — период волны.

В любой другой точке, расположенной на расстоянии r от начала координат в направлении распространения волны, изменение u происходит с опозданием на время t1:

где c — скорость распространения волны в данной среде.

 

Механика.

Кинематика материальной точки. Основные характеристики движения. Нормальное и тангенциальное ускорения мат. точки.

Материальная точка – тело, размерами которого можно пренебречь в условиях данной задачи. Кинематика точки — раздел кинематики, изучающий математическое описание движения материальных точек. Основной задачей кинематики является описание движения при помощи математического аппарата без выяснения причин, вызывающих это движение. Движение любого объекта в кинематике изучают по отношению к некоторой системе отсчета, включающей: тело отсчета, систему измерения положения тела в пространстве (систему координат), прибор для измерения времени (часы).

Положение точки определяется набором обобщенных координат — упорядоченным набором числовых величин, полностью описывающих положение тела. В самом простом случае это координаты точки (радиус-вектора) в выбранной системе координат.

Основные характеристики движения.

траектория - линия, вдоль которой движется материальная точка;

пройденный путь - расстояние, пройденное точкой по е. траектории;

перемещение - вектор, направленный от положения материальной точки в начальный момент времени наблюдения к е. положению в конце промежутка времени наблюдения;

скорость - вектор, характеризующий направление и быстроту перемещения точки;

ускорение - вектор, характеризующий направление и быстроту изменения скорости точки относительно тела отсчета.

Закон независимости движений: если материальная точка участвует в нескольких движениях, то е. перемещение равно векторной сумме перемещений, а скорость - векторной сумме скоростей.

Ускорение, производная скорости по времени — векторная величина, показывающая, насколько изменяется вектор скорости точки (тела) при её движении за единицу времени (т.е. ускорение учитывает не только изменение величины скорости, но и её направления). Тангенциальное ускорение — направлено по касательной к траектории. Характеризует изменение скорости по модулю. Нормальное ускорение — возникает (не равно нулю) всегда при движении точки по окружности (конечного радиуса).

Является составляющей вектора ускорения a, перпендикулярной вектору мгновенной скорости. Вектор нормального ускорения всегда направлен к центру окружности.

 



Поделиться:


Последнее изменение этой страницы: 2016-08-14; просмотров: 526; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.21.231.245 (0.029 с.)