Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Расчет эквивалентного уровня инфразвука↑ ⇐ ПредыдущаяСтр 3 из 3 Содержание книги
Поиск на нашем сайте
В случае непостоянного инфразвукового воздействия производят расчет эквивалентного общего (линейного) уровня звукового давления с учетом поправок на время его действия по табл. П.11.3, добавляемых к значениям измеренного уровня. Приложение 12 (обязательное) Гигиенические требования к микроклимату производственных помещений,
Общие положения 1.1. Настоящий документ содержит гигиенические требования к допустимым сочетаниям величин интенсивности теплового облучения работающих и температуры воздуха с другими параметрами микроклимата, а также особенности их контроля и оценки при использовании систем лучистого (низко, средне- и высокотемпературного) обогрева (СанПиН 2.2.4.548–96 гигиенические требования к микроклимату представлены для производственных помещений, оборудованных традиционными конвективными системами отопления и кондиционирования воздуха).
2. Гигиенические требования к микроклимату производственных помещений, 2.1. Гигиенические требования к допустимым параметрам микроклимата производственных помещений, оборудованных системами лучистого обогрева, применительно к выполнению работ средней тяжести в течение 8-часовой рабочей смены, применительно к человеку одетому в комплект одежды с теплоизоляцией 1 кло (0,155 осм/Вт) представлены в табл. П.12.1 Таблица П.12.1
Требования к организации контроля и методам измерения микроклимата 3.1. Измерение параметров микроклимата в производственных помещениях, оборудованных системами лучистого обогрева, следует проводить в соответствии с требованиями раздела 7 СанПин 2.2.4.548—96 и примечаниями таблицы настоящего документа. 3.2. При измерении интенсивности теплового облучения головы работающих датчик измерительного прибора следует располагать в горизонтальной плоскости. 3.3. При измерении интенсивности теплового облучения туловища датчик измерительного прибора следует располагать в вертикальной плоскости. 3.4. При использовании систем лучистого обогрева производственных помещений рабочие места должны быть удалены от наружных стен на расстояние не менее 2 м. 3.5. По результатам исследований составляется протокол, в котором должна быть оценка результатов выполненных измерений на соответствие нормативным требованиям таблицы настоящего документа. Приложение 13 (справочное) Климатические регионы (пояса) России
Приложение 14 (обязательное) Гигиенические критерии оценки 1. Общие положения 1.1. Настоящие «Гигиенические критерии оценки и классификация условий труда при работах с источниками ионизирующего излучения» (далее - гигиенические критерии) предназначены для гигиенической оценки условий труда работников, подвергающихся облучению от источников ионизирующего излучения в процессе трудовой деятельности. 1.2. Гигиенические критерии оценки ионизирующего фактора имеют принципиальное отличие от оценки других факторов рабочей среды, что обусловлено специфическими особенностями его воздействия на организм человека, сложившейся практикой оценки ионизирующего излучения и необходимостью обеспечения радиационной безопасности в соответствии с законом Российской Федерации «О радиационной безопасности населения» № 3-ФЗ от 09.01.96. 1.3. Критерии оценки условий труда с источниками ионизирующих излучений не учитывают фактическое время пребывания работника на рабочем месте. При этом, условия труда оценивают из расчета работы в стандартных условиях, установленных п. 8.2 НРБ-99. Данные критерии определены с использованием соотношений, принятых НРБ-99 на основании международных моделей дозоформирования. 1.4. Гигиенические критерии основываются на Нормах радиационной безопасности НБР-99 и характеризуют только потенциальную опасность работы в конкретных условиях при неукоснительном соблюдении федеральных норм и правил по контролю реального облучения человека в процессе труда и не влекут каких-либо изменений к требованиям НРБ-99 по ограничению реального облучения установленными пределами доз. 1.5. Проведение работ во вредных и опасных условиях труда, в соответствии со ст. 11 Федерального закона Российской Федерации «О санитарно-эпидемиологическом благополучии населения» № 52-ФЗ от 30.03.99, должно обеспечивать безопасность для здоровья человека посредством выполнения комплекса защитных, технических, организационных и санитарно-гигиенических мероприятий. 2. Принципы классификации условий труда при воздействии 2.1. При обращении с открытыми и закрытыми источниками ионизирующего излучения персонал (работники) подвергается воздействию факторов, которые могут оказывать неблагоприятное воздействие в ближайшем или отдаленном периоде на состояние здоровья работников и их потомство, если уровень этого воздействия приводит к увеличению риска повреждения здоровья. Такие условия труда регламентируются как вредные. 2.2. Ионизирующая радиация при воздействии на организм человека может вызывать два вида неблагоприятных эффектов, которые клинической медициной относят к болезням: детерминированные (лучевая болезнь, лучевой дерматит, лучевая катаракта, лучевое бесплодие, аномалии в развитии плода и др.) и стохастические (вероятностные) беспороговые эффекты (злокачественные опухоли, лейкозы, наследственные болезни). 2.3. В отношении детерминированных эффектов излучения Нормами радиационной безопасности - НРБ-99 предполагается существование порога, ниже которого эффект отсутствует, а выше - тяжесть эффекта зависит от дозы. Вероятность возникновения стохастических беспороговых эффектов пропорциональна дозе, а тяжесть их проявления не зависит от дозы. Латентный период возникновения этих эффектов у облученного человека составляет от 2—5 до 30—50 лет и более. 2.4. НРБ-99 устанавливают для персонала основные пределы доз (ПД) как по 2.5. Согласно НРБ-99, для обеспечения радиационной безопасности при нормальной эксплуатации источников излучения необходимо руководствоваться, наряду с принципами нормирования и обоснования, принципом оптимизации - поддержанием на возможно низком и достижимом уровне с учетом экономических и социальных факторов индивидуальных доз облучения и числа облучаемых лиц при использовании любого источника излучения. По НРБ-99 необходимо постепенное, по мере возможности, снижение индивидуальных доз облучения до 10 мкЗв/год - величины, соответствующей пожизненному индивидуальному риску в результате облучения в течение года 10-6, который оценивается как пренебрежимый или безусловно приемлемый. 2.6. Вышеизложенное (п.п. 2.1—2.5) определяет особенности гигиенических критериев оценки и классификации условий труда при работе с источниками ионизирующих излучений: - степень вредности условий труда определяется не выраженностью проявления у работающих пороговых детерминированных эффектов, а увеличением риска возникновения стохастических беспороговых эффектов; - условия труда характеризуются как вредные даже при соблюдении гигиенических нормативов (ПД по НРБ-99), за исключением перечисленных в п. 2.8 настоящего приложения. 2.7. Для гигиенической оценки и классификации условий труда при работе с источниками излучения используются значения максимальной потенциальной эффективной и/или эквивалентной дозы (табл. П.14.1). 2.8. К допустимым (2 класс) относятся условия труда при обращении с техногенными и природными источниками излучения на производстве, при которых максимальная потенциальная эффективная доза не превысит 5 мЗв/год, а максимальная эквивалентная доза в хрусталике глаза, коже, кистях и стопах не превысит 37,5, 125 и 125 мЗв/год, соответственно. При этом гарантируется отсутствие детерминированных эффектов, а риск стохастических эффектов не превышает средних значений риска для условий труда на производствах, не относящихся к вредным или опасным. Условия труда относятся к допустимым в случаях, когда максимальная потенциальная эффективная доза численно соответствует: - допустимой среднегодовой дозе техногенного облучения персонала группы Б, т. е. допускается облучение работоспособной части взрослого населения, не проходящего специального входного медицинского обследования, дозой 5 мЗ/год; - нормируемой НРБ-99 дозе облучения от природных источников в производственных условиях, т. е. в данных условиях допускается облучение работоспособной части взрослого населения, не проходящего специального входного медицинского обследования, дозой 5 мЗв/год; - пределу годовой дозы для населения, т. е. в отдельно взятый год допускается облучение населения (включая детей) дозой 5 мЗв/год. 2.9. Условия труда с источниками ионизирующего излучения, независимо от их 2.10. К опасным (экстремальным) условиям труда (4 класс) относятся условия труда при работе с источниками, при которых максимальная потенциальная эффективная доза может превысить 100 мЗв/год. 2.11. Превышение индивидуальных доз в условиях нормальной эксплуатации радиационных объектов выше установленных НРБ-99 основных пределов доз для персонала не допускается. Работа с источниками излучения в условиях, когда прогнозируемые значения максимальных потенциальных индивидуальных эффективных и/или эквивалентных доз при облучении в течение года в стандартных условиях (п. 8.2 НРБ-99) могут превысить значения основных пределов доз (классы условий труда 3.4 и 4, табл. П. 14.1 и П.14.2), допускается только при проведении необходимых дополнительных защитных мероприятий (защита временем, расстоянием, экранированием, применением СИЗ и т. п.), гарантирующих непревышение установленных пределов доз, или при планируемом повышенном облучении. 2.12. Определенная методами индивидуального дозиметрического контроля реальная годовая доза облучения (эффективная и/или эквивалентная) работника на конкретном рабочем месте не может изменить класс или степень вредности условий труда данного рабочего места. Случаи, когда реальная годовая доза облучения оказывается выше максимальной потенциальной дозы для данного рабочего места, должны анализироваться. 2.13. Воздействие на организм работников вредных или опасных нерадиационных факторов, способных увеличить риск возникновения детерминированных и стохастических эффектов, должно учитываться дополнительно (раздел 5.11 руководства). 3. Гигиеническая оценка и классификация условий труда 3.1. Для гигиенической классификации условий труда при работе с источниками ионизирующего излучения используются значения максимальной потенциальной эффективной и/или эквивалентной дозы. Классы условий труда в зависимости от их характеристик представлены в табл. П. 14.1. 3.2. В качестве основных гигиенических критериев для оценки условий труда при работе с источниками ионизирующего излучения приняты: - мощность максимальной потенциальной эффективной дозы; - мощность максимальной потенциальной эквивалентной дозы в хрусталике Классы условий труда и степени вредности в зависимости от мощности потенциальной дозы представлены в табл. П.14.2. 3.3. Оценка условий труда при работе с источниками ионизирующего излучения осуществляется на основе систематических данных оперативного радиационного контроля на рабочих местах работников по специальным методическим указаниям.
Таблица П. 14.1 Значения потенциальной максимальной дозы
Таблица П. 14.2 Мощность потенциальной дозы для оценки классов и степеней
3.4. Мощность потенциальной дозы излучения (МПД) для персонала определяется по формуле (1) для эффективной дозы и (или) по формуле (2) - для эквивалентной дозы. При расчете мощности максимальной потенциальной дозы продолжительность рабочего времени для персонала группы А принимается равной 1 700 ч в год, для всех остальных работников - 2 000 ч в год и, соответственно, в формулах (1) и (2) используется коэффициент 2,0 вместо 1,7. 3.5. В табл. П.14.2 значения среднегодовой мощности потенциальной дозы приведены в единицах допустимой мощности годовой потенциальной дозы (ДМПД), т. е. в относительных единицах. Допустимая мощность годовой потенциальной дозы -ДМПД определяется как отношение максимальной допустимой потенциальной эффективной (эквивалентной) дозы к стандартной продолжительности работы в течение года, которая принимается: - для персонала группы А - 1 700 ч/год; - для персонала группы Б - 2 000 ч/год; - для работников, не относящихся к группам А и Б, в случае природного облучения в производственных условиях - 2 000 ч/год. В табл. П.14.3 приводятся значения среднегодовой мощности потенциальной дозы как в единицах ДМПД, так и в мЗв/ч (мкЗв/ч). Результаты значений МПД, рассчитанные по формулам (1) и (2) и представленные в единицах ДМПД, сопоставляются с данными табл. П.14.2.
Таблица П.14.3 Значения мощности потенциальной дозы
4. Термины и определения, используемые при гигиенической оценке Доза максимальная потенциальная - максимальная индивидуальная эффективная (эквивалентная) доза облучения, которая может быть получена за календарный год при работе с источниками ионизирующих излучений в стандартных условиях на конкретном рабочем месте, Зв/год. Доза эффективная (эквивалентная) годовая - сумма эффективной (эквивалентной) дозы внешнего облучения, полученной за календарный год, и ожидаемой эффективной (эквивалентной) дозы внутреннего облучения, обусловленной поступлением в организм радионуклидов за этот же год (п. 18 раздела «Термины и определения» НРБ-99 и ОСПОРБ-99). Единица годовой эффективной дозы - зиверт (Зв). Источник ионизирующего излучения - радиоактивное вещество или устройство, испускающее или способное испускать ионизирующее излучение, на которое распространяется действие НРБ-99 и ОСПОРБ-99 (п. 27 раздела «Термины и определения» НРБ-99 и ОСПОРБ-99). Источник излучения техногенный - источник ионизирующего излучения специально созданный для его полезного применения или являющийся побочным продуктом этой деятельности (п. 29 раздела «Термины и определения» НРБ-99 и ОСПОРБ-99). Источник радионуклидный закрытый - источник излучения, устройство которого исключает поступление содержащихся в нем радионуклидов в окружающую среду в условиях применения и износа, на которые он рассчитан (п. 30 раздела «Термины и определения» НРБ-99 и ОСПОРБ-99). Источник радионуклидный открытый - источник излучения, при использовании которого возможно поступление содержащихся в нем радионуклидов в окружающую среду (п. 31 раздела «Термины и определения» НРБ-99 и ОСПОРБ-99). Место рабочее - место постоянного или временного пребывания персонала для выполнения производственных функций в условиях воздействия ионизирующего излучения в течение более половины рабочего времени или двух часов непрерывно (п. 37 раздела «Термины и определения» НРБ-99 и ОСПОРБ-99). Место рабочее временное - место (или помещение) пребывания персонала для выполнения производственных функций в условиях воздействия ионизирующего излучения в течение менее половины рабочего времени или менее двух часов непрерывно. Место рабочее постоянное - место (или помещение) пребывания персонала для выполнения производственных функций в условиях воздействия ионизирующего излучения в течение не менее половины рабочего времени или двух часов непрерывно. Если обслуживание процессов производства осуществляется в различных участках помещения, то постоянным рабочим местом считается все помещение. Мощность дозы - доза излучения за единицу времени (секунду, минуту, час) (п. 38 раздела «Термины и определения» НРБ-99 и ОСПОРБ-99). Мощность потенциальной дозы излучения - максимальная потенциальная эффективная (эквивалентная) доза излучения при стандартной продолжительности работы в течение года. (В рамках данного документа). Облучение производственное - облучение работников от всех техногенных и природных источников ионизирующего излучения в процессе производственной деятельности (п. 45 раздела «Термины и определения» НРБ-99 и ОСПОРБ-99). Объект радиационный - организация, где осуществляется обращение с техногенными источниками ионизирующего излучения (п. 49 раздела «Термины и определения» НРБ-99 и ОСПОРБ-99). Персонал - лица, работающие с техногенными источниками излучения (группа А) или находящиеся по условиям работы в сфере их воздействия (группа Б) (п. 55 раздела «Термины и определения» НРБ-99 и ОСПОРБ-99). Радиационная авария - потеря управления источником ионизирующего излучения, вызванная неисправностью оборудования, неправильными действиями работников (персонала), стихийными бедствиями или иными причинами, которая могла привести или привела к облучению людей выше установленных норм или радиоактивному загрязнению окружающей среды (п. 58 раздела «Термины и определения» НРБ-99 и ОСПОРБ-99). Работа с источником ионизирующего излучения - все виды обращения с источником излучения на рабочем месте, включая радиационный контроль (п. 60 раздела «Термины и определения» НРБ-99 и ОСПОРБ-99). Работа с радиоактивными веществами - все виды обращения с радиоактивными веществами на рабочем месте, включая радиационный контроль (п. 61 раздела «Термины и определения» НРБ-99 и ОСПОРБ-99). Риск радиационный - вероятность возникновения у человека или его потомства какого-либо вредного эффекта в результате облучения (п. 62 раздела «Термины и определения» НРБ-99 и ОСПОРБ-99). Эквивалент дозы амбиентный (амбиентная доза) H(d) - эквивалент дозы, который был создан в шаровом фантоме МКРЕ на глубине d (мм) от поверхности по диаметру, параллельному направлению излучения, в поле излучения, идентичном рассматриваемому по составу, флюенсу и энергетическому распределению, но мононаправленном и однородном. Эквивалент амбиентной дозы используется для характеристики поля излучения в точке, совпадающей с центром шарового фантома. Словарь основных терминов: учебное пособие, под ред. В. А. Кутькова. Эффекты излучения детерминированные - клинически выявляемые вредные биологические эффекты, вызванные ионизирующим излучением, в отношении которых предполагается существование порога, ниже которого эффект отсутствует, а выше-тяжесть эффекта зависит от дозы (п. 70 раздела «Термины и определения» НРБ-99 и ОСПОРБ-99). Эффекты излучения стохастические - вредные биологические эффекты, вызванные ионизирующим излучением, не имеющие дозового порога возникновения, вероятность возникновения которых пропорциональна дозе и для которых тяжесть проявления не зависит от дозы (п. 71 раздела «Термины и определения» НРБ-99 и ОСПОРБ-99). Приложение 15 (обязательное) Методика Тяжесть трудового процесса оценивают по ряду показателей, выраженных в эр-гометрических величинах, характеризующих трудовой процесс, независимо от индивидуальных особенностей человека, участвующего в этом процессе. Основными показателями тяжести трудового процесса являются: - физическая динамическая нагрузка; - масса поднимаемого и перемещаемого груза вручную; - стереотипные рабочие движения; - статическая нагрузка; - рабочая поза; - наклоны корпуса; - перемещение в пространстве. Каждый из перечисленных показателей может быть количественно измерен и оценен в соответствии с методикой, разделом 5.10 и табл. 17 настоящего руководства. При выполнении работ, связанных с неравномерными физическими нагрузками в разные смены, оценку показателей тяжести трудового процесса (за исключением массы поднимаемого и перемещаемого груза и наклонов корпуса), следует проводить по средним показателям за 2—3 смены. Массу поднимаемого и перемещаемого вручную груза и наклоны корпуса следует оценивать по максимальным значениям. 1. Физическая динамическая нагрузка (выражается в единицах внешней механической работы за смену -кг∙м) Для подсчета физической динамической нагрузки (внешней механической работы) определяется масса груза (деталей, изделий, инструментов и т. д.), перемещаемого вручную в каждой операции и путь его перемещения в метрах. Подсчитывается общее количество операций по переносу груза за смену и суммируется величина внешней механической работы (кг х м) за смену в целом. По величине внешней механической работы за смену, в зависимости от вида нагрузки (региональная или общая) и расстояния перемещения груза, определяют, к какому классу условий труда относится данная работа. Пример 1. Рабочий (мужчина) поворачивается, берет с конвейера деталь (масса 2,5 кг), перемещает ее на свой рабочий стол (расстояние 0,8 м), выполняет необходимые операции, перемещает деталь обратно на конвейер и берет следующую. Всего за смену рабочий обрабатывает 1 200 деталей. Для расчета внешней механической работы вес деталей умножаем на расстояние перемещения и еще на 2, так как каждую деталь рабочий перемещает дважды (на стол и обратно), а затем на количество деталей за смену. Итого: 2,5 кг х 0,8 м х 2 х 1 200 = 4 800 кгм. Работа региональная, расстояние перемещения груза до 1 м, следовательно, по показателю 1.1 работа относится ко 2 классу. При работах, обусловленных как региональными, так и общими физическими нагрузками в течение смены, и совместимых с перемещением груза на различные расстояния, определяют суммарную механическую работу за смену, которую сопоставляют со шкалой соответственно среднему расстоянию перемещения (табл. 17 руководства). Пример 2. Рабочий (мужчина), переносит ящик с деталями (в ящике 8 деталей по 2,5 кг каждая, вес самого ящика 1 кг) со стеллажа на стол (6 м), затем берет детали по одной (масса 2,5 кг), перемещает ее на станок (расстояние 0,8 м), выполняет необходимые операции, перемещает деталь обратно на стол и берет следующую. Когда все детали в ящике обработаны, работник относит ящик на стеллаж и приносит следующий ящик. Всего за смену он обрабатывает 600 деталей. Для расчета внешней механической работы, при перемещении деталей на расстояние 0,8 м, вес деталей умножаем на расстояние перемещения и еще на 2, так как каждую деталь рабочий перемещает дважды (на стол и обратно), а затем на количество деталей за смену (0,8м х 2 х 600 = 960 м). Итого: 2,5 кг х 960 м = 2 400 кгм. Для расчета внешней механической работы при перемещении ящиков с деталями (21 кг) на расстояние 6 м вес ящика с умножаем на 2 (так как каждый ящик переносили 2 раза), на количество ящиков (75) и на расстояние 6 м. Итого: 2 х 6 м х 75= 900 м. Далее 21 кг умножаем на 900 м и получаем 18 900 кгм. Итого за смену суммарная внешняя механическая работа составила 21 300 кгм. Общее расстояние перемещения составляет 1 860 м (900 м + 960 м). Для определения среднего расстояния перемещения 1 800 м: 1 350 раз и получаем 1,37 м. Следовательно, полученную внешнюю механическую работу следует сопоставлять с показателем перемещения от 1 до 5 м. В данном примере внешняя механическая работа относится ко 2 классу. 2. Масса поднимаемого и перемещаемого груза вручную (кг) Для определения массы груза (поднимаемого или переносимого работником на протяжении смены, постоянно или при чередовании с другой работой) его взвешивают на товарных весах. Регистрируется только максимальная величина. Массу груза можно также определить по документам. Пример 1. Рассмотрим предыдущий пример 2 пункта 1. Масса поднимаемого груза - 21 кг, груз поднимали 150 раз за смену, т. е. это часто поднимаемый груз (более 16 раз за смену) (75 ящиков, каждый поднимался 2 раза), следовательно, по этому показателю работу следует отнести к классу 3.2 Для определения суммарной массы груза, перемещаемого в течение каждого часа смены, вес всех грузов за смену суммируется. Независимо от фактической длительности смены, суммарную массу груза за смену делят на 8, исходя из 8-часовой рабочей смены. В случаях, когда перемещения груза вручную происходят как с рабочей поверхности, так и с пола, показатели следует суммировать. Если с рабочей поверхности перемещался больший груз, чем с пола, то полученную величину следует сопоставлять именно с этим показателем, а если наибольшее перемещение производилось с пола - то с показателем суммарной массы груза в час при перемещении с пола. Если с рабочей поверхности и с пола перемещается равный груз, то суммарную массу груза сопоставляют с показателем перемещения с пола (пример 2 и 3). Пример 2. Рассмотрим пример 1 пункта 1. Масса груза 2,5 кг, следовательно, в соответствии с табл. 17 руководства (п. 2.2) тяжесть труда по данному показателю относится к 1 классу. За смену рабочий поднимает 1 200 деталей, по 2 раза каждую. В час он перемещает 150 деталей (1 200 деталей: 8 часов). Каждую деталь рабочий берет в руки 2 раза, следовательно, суммарная масса груза, перемещаемая в течение каждого часа смены составляет 750 кг (150 х 2,5 кг х 2). Груз перемещается с рабочей поверхности, поэтому эту работу по п. 2.3 можно отнести ко 2 классу. Пример 3. Рассмотрим пример 2 пункта 1. При перемещении деталей со стола на станок и обратно масса груза 2,5 кг, умножается на 600 и на 2, получаем 3 000 кг за смену. При переносе ящиков с деталями вес каждого ящика умножается на число ящиков (75) и на 2, получаем 3 150 кг за смену. Общий вес за смену = 6 150 кг, следова- тельно, в час - 769 кг. Ящики рабочий брал со стеллажа. Половина ящиков стояла на нижней полке (высота над полом 10 см), половина - на высоте рабочего стола. Следовательно, больший груз перемещался с рабочей поверхности и именно с этим показателем надо сопоставлять полученн
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Последнее изменение этой страницы: 2016-08-14; просмотров: 268; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.145.18.135 (0.01 с.) |