Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Общие указания к выполнению курсовой работыСодержание книги Поиск на нашем сайте
Одна из частей выполняемой курсовой работы по строительной теплофизике – это выбор оптимальной толщины ограждающей конструкции, которая обеспечит нормативный микроклимат помещений при наименьших затратах на строительные материалы и возведение конструкций, снижение потерь тепла в зимний период и поступление тепла в летний период. После того, как выбрана конструкция стены или покрытия [5,6,73, 4 и др.] проверяются ее теплотехнические свойства согласно СНиП [14].
Порядок выполнения работы
а) Выбрать исходные данные (см. приложение 1): - данные о климате местности, где проектируется здание; - требуемые параметры внутреннего микроклимата; - расчетные характеристики применяемых строительных материалов. б) Определить сопротивление теплопередаче выбранной ограждающей конструкции: в) Проверить теплоустойчивость ограждающей конструкции: - в теплый период года; - в холодный период года. г) Проверить ограждающую конструкцию на возможность конденсации влаги внутри ее. д) Проверить ограждающую конструкцию на возможность конденсации влаги на ее внутренней поверхности.
РАСЧЕТ НА СОПРОТИВЛЕНИЕ ТЕПЛОПЕРЕДАЧЕ НАРУЖНЫХ ОГРАЖДАЮЩИХ КОНСТРУКЦИЙ
Сопротивление теплопередаче ограждающей конструкции Rо должно быть не менее требуемого сопротивления теплопередаче Ro reqо.тр., определяемого по формуле (3), и приведенногонормируемогоприведенного сопротивления теплопередаче RIIreqо.тр , определяемого из условия энергосбережения по табл. 86, (второй этап), согласно п. 1.6. В табл. 86 приведены минимальные значения сопротивления теплопередаче для строящихся зданий, а также реконструируемых и капитально ремонтируемых независимо от этажности. Срок введения в действие требований табл. 6 установлен с 1 января 2000 г. Для зданий с влажным и мокрым режимом, зданий с избытками явного тепла более 23 Вт/м3, зданий, предназначенных для сезонной эксплуатации (осенью или весной), и зданий с расчетной температурой внутреннего воздуха 12 оС и ниже, а также для внутренних стен, перегородок и перекрытий между помещениями при разности расчетных температур воздуха в этих помещениях более 6 оС приведенное сопротивление теплопередаче следует принимать не ниже значений, определяемых по формуле (3). Параметры воздуха внутри жилых и общественных зданий следует определять не ниже температур, приведенных в таблице 1 – для холодного периода года, и не выше температур, приведенных в таблице 2 – для теплого периода года.
Таблица 1 – Оптимальная температура и допустимая относительная влажность воздуха внутри здания для холодного периода года
Таблица 2 – Допустимые температура и относительная влажность воздуха внутри здания для теплого периода года
Влажностный режим помещений зданий и сооружений в зимний период в зависимости от относительной влажности и температуры внутреннего воздуха следует устанавливать по табл. 31
Таблица 31
Зонуы влажности территории Россиивыбранного места строительства следует принимать по прил. 21 [I, прил. 1]. Далее устанавливаем Уусловия эксплуатации ограждающейих конструкциий в зависимости от влажностного режима помещенияй и зоны влажности строительства устанавливают по прил. 32. [I, прил. 2].
1.1. Требуемое сопротивление теплопередаче Rreqо.тр., м2 оС/Вт ограждающих конструкций, за исключением заполнений световых проемов (окон, балконных дверей), следует определять по формуле RRо.тр. =req = n(tintв – textн) / Dtн n× aintв, (3) где Dtн n – нормативный температурный перепад между температурой внутреннего воздуха и температурой внутренней поверхности ограждающей конструкции, принимаемый по табл. 42; [1, табл. 2*]; n – коэффициент, принимаемый в зависимости от положения наружной поверхности ограждающих конструкций по отношению к наружному воздуху согласно табл. 53; [1, табл. 3]; tintв – расчетная температура внутреннего воздуха, оС, принимаемая согласно табл. 1, 2, ГОСТ и нормам проектирования соответствующих зданий и сооружений; textн – расчетная зимняя температура наружного воздуха, равная средней температуре наиболее холодной пятидневки обеспеченностью 0,92, по СНиП 23-01.01.01-82 [2]; для расчета внутренних стен, перегородок и перекрытий между помещениями при разности расчетных температур воздуха в этих помещениях более 60С – принимается расчетная температура воздуха более холодного помещения. aintв – коэффициент теплоотдачи внутренней поверхности ограждающей конструкции, принимаемый по табл. 64.
Таблица 42
Таблица 53
Таблица 64
1.2. Термическое сопротивление R, м2×оС/Вт, однослойной, а также слоя многослойной ограждающей конструкции следует определять по формуле R = d / l (4) где d - толщина слоя, м; l - расчетный коэффициент теплопроводности материала слоя, Вт/м×оС, при условиях эксплуатации "А" или "Б" по прил. 54.2 [1, прил. 2].
1.3. Термическое сопротивление Rkк, м2×оС/Вт, ограждающей конструкции с последовательно расположенными однородными слоями следует определять как сумму термических сопротивлений отдельных слоев Rkк = R1 + R2 + … + Rn + Ra.lв.п. (5) где Ra.lв.п. – термическое сопротивление замкнутой воздушной прослойки, принимаемое по прил. 43. [1, прил. 4].
П р и м е ч а н и е. Слои конструкции, расположенные между воздушной прослойкой, вентилируемой наружным воздухом, и наружной поверхностью ограждения, не учитываются.
1.4. Приведенное термическое сопротивление , м2×оС/Вт, неоднородной ограждающей конструкции с теплопроводными включениями с толщиной, большей 50% толщины ограждения, теплопроводность которых не превышает теплопроводность основного материала более чем в 40 раз (многослойной каменной стены облегченной кладки с теплоизоляционным слоем и т.п.) определяется следующим образом:
а) плоскостями, параллельными направлению теплового потока, ограждающая конструкция (или часть ее) условно разрезается на участки, из которых одни участки могут быть однородными (однослойными) – из одного материала, а другие неоднородными – из слоев различных материалов, и термическое сопротивление ограждающей конструкции Rа.Т, м2×оС/Вт, определяется по формуле (6) где АF1, АF2, …, АFin – площади отдельных участков конструкции (или части ее), м2; R1, R2, …, Rn – термические сопротивления указанных отдельных участков конструкции, определяемые по формуле (4) для однородных участков и по формуле (5) для неоднородных участков;
б) плоскостями, перпендикулярными направлению теплового потока, ограждающая конструкция (или часть ее, принятая для определения Rа.Т) условно разрезается на слои, из которых одни слои могут быть однородными – из одного материала, а другие неоднородными – из однослойных участков разных материалов. Термическое сопротивление однородных слоев определяется по формуле (4), неоднородных слоев – по формуле (6) и термическое сопротивление ограждающей конструкции RТб – как сумма термических сопротивлений отдельных однородных и неоднородных слоев – по формуле (5). Приведенное термическое сопротивление ограждающей конструкции следует определять по формуле . (7) Если величина Rа.Т превышает величину RТб более чем на 25% или ограждающая конструкция не является плоской (имеет выступы на поверхности), то приведенное термическое сопротивление такой конструкции следует определять на основании расчета температурного поля, см. [1,431]. 1.5. Сопротивление теплопередаче Rо, м2×оС/Вт, ограждающей конструкции следует определять по формуле Rо = 1/aintв + Rkк + 1/aextн (8) где aextн – коэффициент теплоотдачи для зимних условий наружной поверхности ограждающей конструкции, , табл. 5.
В качестве первого варианта Rо принимается сопротивление теплопередаче ограждающей конструкции, большее Rо тр. Таблица 75
1.6. Определить требуемые сопротивления теплопередаче исходя из условия энергосбережения. Для этого необходимо подсчитать градусо-сутки отопительного периода Dd (ГСОП) по формуле: Dd ГСОП = (tintв – thtот.пер .) zот.пер . ht (9) где tintв – то же, что в формуле (3); thtот.пер, zhtот.пер . – средняя температура, оС, и продолжительность, сут., периода со средней суточной температурой воздуха £ 8 оС, [2]. Затем по табл. 86 в соответствии с Dd ГСОП определить требуемое сопротивление теплопередаче ограждающей конструкции Rreq.IIо.тр. Таблица 86
Пример 1
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Последнее изменение этой страницы: 2016-07-16; просмотров: 212; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 13.58.53.238 (0.007 с.) |