Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Дайте полную логическую характеристику понятиям: «Президент», «Общественное порицание».
1.1. Понятие «Президент» по объему: простое - состоит из одного слова, общее - отражает класс предметов, регистрирующее - отражает предметы, поддающиеся учету; по содержанию: конкретное - отражает самостоятельный предмет, положительное - отражает действительно существующие предметы, безотносительное - для данного понятия отсутствует понятие противоположного значения, несобирательное - отражает отдельно существующие предметы. 1.2. Понятие «Общественное порицание» по объему: дескриптивное – описательное, общее - отражает класс предметов, нерегистрирующее – не поддается учету; по содержанию: абстрактное - отражает отношение между предметами (юридическими или физическими лицами), положительное - отражает наличие, не является отрицанием; соотносительно е - соответствует противоположному понятию «Общественное поощрение», не собирательное - обозначает совокупность предметов, не составляющих целостность. 2. Определите вид отношения между понятиями: «Образовательное учреждение – высшее учебное заведение – школа – СПбГУ - столовая». Выразите в логической форме и изобразите в круговых схемах при помощи кругов Эйлера. «Образовательное учреждение» (А), «высшее учебное заведение» (В), «школа» (С), «СПбГУ» (D), «столовая» (Е). Определим отношения между понятиями: всякое «высшее учебное заведение» (В) является «образовательным учреждением» (А) – следовательно, понятие (В) подчиняется понятию (А); «СПбГУ» (D) - «высшее учебное заведение» (В) и ему подчиняется; «школа» (С) как и «высшее учебное заведение» (В) являются «образовательными учреждениями» (А) и находятся в отношении соподчинения; «столовая» (Е) – это понятие не имеет общих элементов с предыдущими понятиями и, следовательно, несравнима с ними. Далее изобразим схематично эти отношения:
Выразим эти отношения в логической форме: «Все В,С,D, есть А»; «Все D есть В»; Некоторые А есть В,С,D»; «Некоторые В есть D»; «Ни одно С не есть В,D» и наоборот; «Ни одно Е не есть А,В,С,D» и наоборот. 3. Произведите операции обобщения и ограничения понятия: «университет». Обозначим понятие «университет» (В). Для того чтобы, произвести операцию обобщения, необходимо перейти от понятия (В) к понятию с большим объемом - (А), путем отбрасывания признаков содержания понятия (В), при этом содержание понятия (В) будет больше чем у понятия (А) – «высшее учебное заведение». Далее произведем операцию ограничения понятия (В), для этого необходимо перейти от понятия (В) к понятию с меньшим объемом - понятию (С). При этом содержание понятия (С) будет больше, чем у понятия (В), таким образом, ограничение производится путем прибавления признака, не включенного в содержание понятия (В) и в результате получим: «университет» (В) → «Санкт-Петербургский университет» (С).
4. Определите вид деления, и какое правило нарушено, если нарушено. Укажите делимое понятие, члены и основание деления: «Час состоит из минут и секунд» и «Красота делится на внутреннею (душевную красоту человека), художественную, техническую». 4.1. «Час состоит из минут и секунд». Данное выражение не является делением, так как между понятием «час» и понятиями «минута», «секунда» нет родовидовых отношений, это отношение целого и части. 4.2. «Красота делится на внутреннею (душевную красоту человека), художественную, техническую». Вид деления – по видоизменению признака. Основанием деления является признак – носитель качества прекрасного. Деление не верное, так как не охватывает всех носителей, а именно природную красоту. Следовательно, нарушено правило соразмерности, ошибка – не полное деление. 5. Установите правильность определений, и какое правило нарушено, если нарушено: «Шар представляет собой тело, образованное вращением полукруга вокруг диаметра» и «Доброта – это стремление делать добро». 5.1. «Шар представляет собой тело, образованное вращением полукруга вокруг диаметра». Определение правильное, так как раскрыто содержание понятия «шар», которое является определяемым, «тело, образованное вращением полукруга вокруг диаметра» - определяющее понятие. Понятие «тело» - является родовым понятием, а понятие - «образованное вращением полукруга вокруг диаметра» - видовое отличие определяемого понятия. Определение генетическое, так как видовое отличие указывает способ создания предмета. 5.2. «Доброта – это стремление делать добро». «Доброта» - определяемое понятие. «Стремление делать добро» – определяющее. «Стремление» - родовое понятие, а «делать добро» - видовое отличие определяемого понятия. Нарушены правила: соразмерности и круг в определении. Ошибки: слишком узкое определение и тавтология. Правильное реальное определение: «Доброта – это отзывчивость, душевное расположение к людям, стремление делать добро другим».
Суждения Определите вид простых суждений и их классификацию, приведите к явной логической форме, если это необходимо. «Внеземные цивилизации существуют». «Алексей старше Екатерины, а Екатерина старше Светланы». «Точные науки не являются гуманитарными». 1. «Внеземные цивилизации существуют». - Данное суждение является экзистенциальным, так как выражает факт существования. 2. «Алексей старше Екатерины, а Екатерина старше Светланы». - Данное суждение – реляционное, так как здесь имеется отношение между элементами Х, У и Z. Свойство отношения – транзитивное, так как из отношения Х и У, У и Z следует отношение Х и Z. 3. «Точные науки не являются гуманитарными». - Данное суждение является атрибутивным, так как оно о признаке предмета и здесь отрицается то, что точные науки являются гуманитарными. Структура: «Ни одно S не является Р», где S - субъект, понятие о предмете суждения; Р - предикат, понятие о признаке предмета. Связка - отношение между S и Р; «не является» - следовательно, суждение отрицательное. Квантор – указатель на объём S: «ни одно», который в данном случае отсутствует, и только подразумевается - следовательно, суждение общее. Таким образом, суждение «Точные науки не являются гуманитарными» - в явной форме: «Ни одна точная наука не являются гуманитарной наукой» - является атрибутивным и общеотрицательным («Е»). Найдите S, Р, кванторное слово и связку у атрибутивного суждения. Определите объединительную классификацию по качеству и количеству, приведите к явной логической форме. Выявите распределенность терминов и изобразите схематично. «Древние греки внесли большой вклад в развитие философии». Субъект - «древние греки» (S). Предикат - «внесли большой вклад в развитие философии» (Р). Подбираем к субъекту суждения родовое понятие - «Люди». В канонической форме предикат будет выглядеть таким образом: «Люди, внесшие большой вклад в развитие философии». Логическая связка – «есть» - утверждается наличие свойств. Кванторное слово - отсутствует, но из анализа смысла суждения ясно, что речь идет только о некоторой части древних греков → квантор суждения - «Некоторые». Логическая форма суждения: «Некоторые древние греки (S) есть люди, внесшие большой вклад в развитие философии (Р)». Формула суждения: Некоторые S есть Р. Количественно-качественная характеристика суждения – частноутвердительное (I). Графически изображаем отношения между терминами суждения, которое является отношением перекрещивания.
Из схемы видно, что оба термина взяты в части объема, значит, они являются нераспределенными (S -, Р -). Определите отношения между суждениями, их виды и истинность: «Российское законодательство ни сколько не изменилось за последние годы». «Российское законодательство изменилось полностью за последние годы». Определим вид суждений: «Российское законодательство ни сколько не изменилось за последние годы» - общеотрицательное «Е». «Российское законодательство изменилось полностью за последние годы» - общеутвердительное «А». Таким образом, они отличаются качеством, а количество у них одинаковое. Отношение сравнимое, несовместимое, противоположное, что подтверждает и схема логический квадрат. Такие суждения одновременно не могут быть истинными, но могут быть одновременно ложными. Установите вид сложного сужения, составьте символическую запись, укажите составные части, при необходимости сформулируйте его в явной логической форме: «Брак расторгается, если судом установлено, что совместная жизнь супругов и сохранение семьи невозможно». «Брак расторгается, если судом установлено, что совместная жизнь супругов и сохранение семьи невозможно». Приведем к явной логической форме: «Если судом установлено, что совместная жизнь супругов и сохранение семьи невозможно, то брак расторгается». Расчленим данное сложное суждение на простые: а) «Судом установлено, что совместная жизнь супругов невозможна» - (р); б) «Судом установлено, что сохранение семьи невозможно» - (q); в) «Брак расторгается» - (r). Имеет место утверждение одновременного наличия нескольких ситуаций - конъюнкция (Ù); и возникновение другой ситуации - импликация (→). Формула данного сложного суждения: (рÙq) → r, где, р, q, r – переменные; (р Ù q) – основание; r – следствие. 5. Запишите логические формулы сложного суждения и постройте для него таблицу истинности:«По проводнику или не идет ток, или амперметр испорчен». Суждение имеет явную логическую форму и состоит из двух простых: а) «По проводнику не идет ток» (р); б) «Амперметр испорчен» (q). Союз «или … или» утверждает наличие только одной из двух ситуаций - сильная дизъюнкция. Формула сложного суждения: р V q. Строим таблицу истинности. Для ее построения необходимо знать количество столбцов и количество строк в таблице. В данной таблице три столбца - количество переменных (р, q, р V q. ) и четыре строки (х = 2 n, где х - количество строк, n - количество переменных формуле) - 22 = 4. В первом столбце записываем все варианты истинности для р (И и Л). Во втором столбце против каждого из значений первого столбца фиксирует значения сначала два раза - И, а затем два раза - Л. Под знаком логического союза сильная дизъюнкция - записываем конечный результат, ориентируясь на таблицу истинности для строгой дизъюнкции.
6. Установите вид сложного сужения, составьте символическую запись, укажите составные части, при необходимости сформулируйте его в явной логической форме и постройте для него таблицу истинности. «Если на улице светло, то солнце светит или ясная луна». Суждение имеет явную логическую форму и состоит из трех простых суждений: а) «Если на улице светло» - (р) (основание); б) «солнце светит» - (q) (следствие); в) «ясная луна» - r (следствие). Союз «если..., то...» означает, что ситуация, выраженная основанием («на улице светло») является достаточным условием для возникновения ситуации, выраженной следствием («солнце светит или ясная луна»). Логическая связь в суждении - импликация (→). В следствии между суждениями стоит союз «или», который означает утверждение наличия хотя бы одной из двух ситуаций. Логическая связь - слабая дизъюнкция (V). Формула сложного суждения: р → (q V r). Строим таблицу истинности для суждения данной формы. Количество столбцов в таблице равно пяти (переменных в формуле – 3 и 2 вида сложных суждений); количество строк в таблице – 8 (х = 2 n, → 23= 8). Для того чтобы определить истинностные значения данной формулы необходимо определить порядок действий. Первым действием находим истинностное значение слабой дизъюнкции (V), а затем истинностное значение импликации (→). Истинностные значения импликации (→) являются истинностными значениями данной формулы. Формула данного суждения является выполнимой, так как она принимает и значение И, и значение Л.
7. Осуществите операции преобразования (обращение и превращение) атрибутивного суждения, приведя его к явной логической форме, указав закономерности: «Эти грибы ядовитые». Приведем к явной логической форме: «Некоторые грибы являются ядовитыми». Формула суждения: «Некоторые S есть Р» – это частноутвердительное суждение (I). Его можно обратить и превратить. 1. Обращение осуществляется путем перестановки S и Р. По количеству суждение может изменяться, а по качеству – всегда постоянно. Возможные закономерности обращения: чистое обращение I→I, «Некоторые S есть Р» → «Некоторые Р есть S»; и обращение с ограничением I→А, «Некоторые S есть Р » → «ВсеР есть S»; «S есть Р» → «Р есть S». Получим: «Некоторые грибы являются ядовитыми» → «Некоторое ядовитое является грибами». Или «Некоторые грибы являются ядовитыми» → «Все, что ядовито является грибами». В данном примере лучше применять чистое обращение, так как обращение с ограничением – ложно. 2. Превращение, это преобразование путём изменения качества, количество - постоянно, характерно двойное отрицание. Закономерность превращения: I→О, «Некоторые S есть Р» → «Некоторые S не есть не-Р». Получим: «Некоторые грибы являются ядовитыми» → «Некоторые грибы не являются не ядовитыми».
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Последнее изменение этой страницы: 2016-07-16; просмотров: 946; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.147.77.119 (0.008 с.) |