Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Основные параметры варикапа.Содержание книги
Поиск на нашем сайте
1. Емкость между выводами варикапа при заданном обратном напряжении: Максимальное значение от 5 до 300 пФ в зависимости от типа. 2. Коэффициент перекрытия по емкости - это отношение емкости варикапа при минимальном, максимальном допустимым напряжениям. Емкость варикапа, как и любого другого диода, определяется по формуле: C=ЕS/d , где E-диалектрик проницаемости полупроводника. S-площадь р-n- перехода d- ширина р-n-перехода. БИПОЛЯРНЫЕ ТРАНЗИСТОРЫ. Различают транзисторы биполярные и униполярные. 1.Транзистор биполярный -полупроводниковый прибор с двумя взаимодействующими электрическими переходами и тремя (или более) выводами, усилительные свойства которого обусловлены явлениями инжекции и экстракции не основных носителей заряда. 2. Транзистором называется электропреобразовательный прибор с несколькими электрическими переходами, пригодный для усиления мощности, имеющий три или более вывода.
Такая структура, как расположена здесь, с таким расположением полупроводниковых материалов называется р-n-p типа или структура прямой проводимости. Если полупроводники поменять местами, то такой тип транзистора будет называться транзистором обратной проводимости или n-p-n типа. Электрический переход между базой и эмиттером называется эмиттерным переходом. Переход между базой и коллектором называется коллекторным переходом. Обозначения: p-n-p типа
n-p-n типа
безкорпустной транзистор
Для нормальной работы любого транзистора необходимо подать на его электроды начальное смещение так, чтобы эмиттерный переход был включен в прямом, а коллекторный в обратном направлении. Падение напряжения на эмиттерном переходе составляет несколько десятых долей вольта, а на коллекторном - единицы или десятки вольта. Вольт- амперная характеристика эмиттерного перехода.
Вольт- амперная характеристика коллекторного перехода
Совмещенная вольт-амперная характеристика
В активном режиме прямое смещение эмиттерного перехода создается за счет включения постоянного источника питания U эмиттер базы (Uэб), а обратное смещение коллекторного перехода за счет включения U коллектора базы (Uкб).
Iэ=Iк+Iб В р-n-p транзисторе ток создается преимущественно дырками, а в n-p-n - электронами. Величина Uэб имеет небольшое значение, близкое к высоте потенциального барьера, и составляет доли вольт. Величина Uкб по крайней мере на порядок больше напряжения Uэб и ограничивается лишь напряжением пробоя коллекторного перехода. При включении источников питания Uэб и Uкб потенциальные барьеры эмиттерного перехода снижаются за счет Uэб, а потенциальный барьер коллекторного перехода повышается за счет Uкб. Дырки эмиттера легко преодолевают понизившийся потенциальный барьер и за счет диффузии инжектируются в базу, а электроны базы в эмиттеры по той же причине. Дырки эмиттера диффузируют в базе к направлению коллекторного перехода за счет перехода плотности дырок по длине базы (1). большинство из них доходят до коллекторного перехода, а незначительная часть рекомбенируется с электронами базы. Для уменьшения потерь дырок на рекомбинацию, базу делают тонкой. Поскольку поле коллекторного перехода для дырок является ускоряющим, они оттягиваются через коллекторный переход коллекторами, тоесть происходит экстракция дырок в коллектор. Распространяясь вдоль коллектора за счет перепада плотности дырки достигают контакта коллектора и рекомбинируют с электронами подходящими к выводу от источника. Основные носители заряда коллекторов (дырки), вследствие того, что потенциальный барьер коллекторного перехода велик, практически не могут уйти из коллектора в базу. Через транзистор происходит сквозное скольжение дырок от эмиттера через базу к коллектором, и лишь незначительная часть их из-за рекомбинации с электронами базы не доходить до коллектора. часть с дырками эмиттера восполняется электронами источника которые поступают в базу через ее вывод. Наряду с основными носителями заряда через эмиттерный и коллекторный переходы движутся и неосновные для каждой из областей носителей, особенно через коллекторный переход: дырок базы в коллектор; и электронов коллектора в базу. Их количество растет с повышением температуры. Таким образом, токи с цепей эмиттера передаются в цепь коллектора с коэффициентом a в такой зависимости: a=Iк/Iэ, где коэффициент a называется коэффициент передачи тока эмиттера в коллектор. В современных тр-рах a бывает равна: a= 0,95¸0,99 и даже больше, но всегда меньше 1. В зависимости от полярности напряжения приложенного к эмиттерным и коллекторным переходам транзистора, различают 4 режима его работы. 1. Активный режим. На эмиттерный переход подано прямое напряжение, а на коллекторный - обратное. Он является основным режимом работы коллектора. Из-за того, что напряжение в цепи коллектора значительно превышает напряжение, подведенное к эмиттерному переходу, а токи в цепях эмиттера и коллектора практически равны, то мощность полезного сигнала на выходе из схемы (коллекторной цепи) на много больше, чем во входной (эмиттерной) цепи транзистора. 2.Режим отсечки. К обоим переходам проводятся обратные напряжения. Поэтому через них проходит лишь незначительный ток, обусловленный движением неосновных носителей заряда. Практически транзистор в режиме отсечки заперт. 3. Режим насыщения. Оба перехода находятся под прямым напряжением. Ток в выходной цепи транзистора максимален, и практически не регулируется током входной цепи. Транзистор, управляемый прибор. В этом режиме транзистор полностью открыт. 4. Инверсный режим. К эмиттерному переходу подводится обратное напряжение, а к коллекторному - прямое. Эмиттер и коллектор меняются своими ролями - эмиттер выполняет функцию коллектора, а коллектор - эмиттера. Этот режим, как правило, не соответствует нормальным условиям эксплуатации транзистора.
|
||||||||||||||||||||||||||||
Последнее изменение этой страницы: 2016-08-01; просмотров: 91; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.129.70.138 (0.007 с.) |