Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Ионизируещее излучение.Виды.Нормирование.Способы защитыСодержание книги
Поиск на нашем сайте
Ионизирующие излучения — это электромагнитные излучения, которые создаются при радиоактивном распаде, ядерных превращениях, торможении заряженных частиц в веществе и образуют при взаимодействии со средой ионы различных знаков. Виды ионизирующих излучений. В решении производственных задач имеют место разновидности ионизирующих излучений как (корпускулярные потоки альфа-частиц, электронов (бета-частиц), нейтронов) и фотонные (тормозное, рентгеновское и гамма-излучение). Альфа-излучение представляет собой поток ядер гелия, испускаемых главным образом естественным радионуклидом при радиоактивном распаде, имеют массу 4 у.е. и заряд +2. Энергия альфа-частиц составляет 4—7 Мэв. Пробег альфа-частиц в воздухе достигает 8—10 см, в биологической ткани нескольких десятков микрометров. Так как пробег альфа-частиц в веществе невелик, а энергия очень большая, то плотность ионизации на единицу длины пробега у них очень высока (на 1 см до десятка тысяч пар-ионов). Бета-излучение — поток электронов или позитронов при радиоактивном распаде. Бета-частицы имеют массу, равную 1/1838 массы атома водорода, единичный отрицательный (бета-частица) или положительный (позитрон) заряды. Энергия бета-излучения не превышает нескольких Мэв. Пробег в воздухе составляет от 0,5 до 2 м, в живых тканях — 2— 3 см. Их ионизирующая способность ниже альфа-частиц (несколько десятков пар-ионов на 1 см пути). Нейтроны — нейтральные частицы, имеющие массу атома водорода. Они при взаимодействии с веществом теряют свою энергию в упругих (по типу взаимодействия биллиардных шаров) и неупругих столкновениях (удар шарика в подушку). Гамма-излучение — фотонное излучение, возникающее при изменении энергетического состояния атомных ядер, при ядерных превращениях или при аннигиляции частиц. Источники гамма-излучения, используемые в промышленности, имеют энергию от 0,01 до 3 Мэв. Гамма-излучение обладает высокой проникающей способностью и малым ионизирующим действием (низкая плотность ионизации на единицу длины). Рентгеновское излучение — фотонное излучение, состоящее из тормозного и (или) характеристического излучения, возникает в рентгеновских трубах, ускорителях электронов, с энергией фотонов не более 1 Мэв. Тормозное излучение — фотонное излучение с непрерывным энергетическим спектром, возникающее при уменьшении кинетической энергии заряженных частиц. Характеристическое излучение — это фотонное излучение с дискретным энергетическим спектром, возникающее при изменении энергетического состояния электронов атома. Рентгеновское излучение, так же как и гамма-излучение, имеет высокую проникающую способность и малую плотность ионизации среды. Нормирование Нормы радиационной безопасности включают в себя термины и определения, которые необходимо использовать в решении проблем радиационной безопасности. Они также устанавливают три класса нормативов: основные дозовые пределы; допустимые уровни, являющиеся производными от дозовых пределов; пределы годового поступления, объемные допустимые среднегодовые поступления, удельные активности, допустимые уровни загрязнения рабочих поверхностей и т. д.; контрольные уровни. Нормирование ионизирующих излучений определяется характером воздействия ионизирующей радиации на организм человека. При этом выделяются два вида эффектов, относящихся в медицинской практике к болезням: детерминированные пороговые эффекты (лучевая болезнь, лучевой ожог, лучевая катаракта, аномалии развития плода и др.) и стохастические (вероятностные) беспороговые эффекты (злокачественные опухоли, лейкозы, наследственные болезни). Способы защиты От альфа-лучей можно защититься путём: -увеличения расстояния до ИИИ, т.к. альфа-частицы имеют небольшой пробег; -использования спецодежды и спецобуви, т.к. проникающая способность альфа-частиц невысока; -исключения попадания источников альфа-частиц с пищей, водой, воздухом и через --слизистые оболочки, т.е. применение противогазов, масок, очков и т.п. В качестве защиты от бета-излучения используют: -ограждения (экраны), с учётом того, что лист алюминия толщиной несколько миллиметров полностью поглощает поток бета-частиц; -методы и способы, исключающие попадание источников бета-излучения внутрь организма. Защиту от рентгеновского излучения и гамма-излучения необходимо организовывать с учётом того, что эти виды излучения отличаются большой проникающей способностью. Наиболее эффективны следующие мероприятия (как правило, используемые в комплексе): -увеличение расстояния до источника излучения; -сокращение времени пребывания в опасной зоне; -экранирование источника излучения материалами с большой плотностью (свинец, железо, бетон и др.); -Использование защитных сооружений (противорадиационных укрытий, подвалов и т.п.) для населения; -использование индивидуальных средств защиты органов дыхания, кожных покровов и слизистых оболочек; -дозиметрический контроль внешней среды и продуктов питания. При использовании различного рода защитных сооружений следует учитывать, что мощность экспозиционной дозы ионизирующего излучения снижается в соответствии с величиной коэффициента ослабления (Косл). Воздушная ударная волна Большинство разрушений и повреждений зданий, сооружений и оборудования объектов полиграфии (ОЭ), а также поражение людей обусловлено, как правило, воздействием воздушной ударной волны (ВУВ). В то же время защитить объекты полиграфии от воздушной ударной волны гораздо труднее, чем от других поражающих факторов. Ударная волна в воздухе образуется за счет колоссальной энергии, выделяемой в зоне реакции, где исключительно высокая температура и давление достигает миллиардов атмосфер (до 105 млрд. Па). Раскаленные пары и газы, стремясь расшириться, производят резкий удар по окружающим слоям воздуха, сжимают и нагревают до высокой температуры. Эти слои воздуха приводят в движение последующие слои, и так сжатие и перемещение воздуха происходит от одного слоя к другому во все стороны от центра взрыва, образуя воздушную ударную волну. Расширение раскаленных газов происходит в сравнительно малых объемах, поэтому их действие на более заметных удалениях от центра ядерного взрыва исчезает и основном носителем действия взрыва становится воздушная ударная волна. Вблизи центра взрыва скорость распространения ударной волны в несколько раз превышает скорость звука в воздухе. С увеличением расстояния от места взрыва скорость распространения волны быстро падает, а ударная волна ослабевает; на больших удалениях ударная волна переходит, по существу, в обычную акустическую волну и скорость ее распространения приближается к скорости звука в окружающей среде, т.е.к 340 м/с. Воздушная ударная волна при ядерном взрыве средней мощности проходит примерно 1000 м за 1,4 с, 2000 м -- за 4 с, 3000 м -- за 7 с, 5000 м-- за 12 с. Отсюда следует, что человек, увидев вспышку ядерного взрыва, за время до прихода ударной волны, может занять ближайшее укрытие (складку местности, канаву, кювет, простенок и т.п.) и тем самым уменьшить вероятность поражения ударной волной. Основными параметрами ударной волны, определяющими ее поражающее действие являются: - избыточное давление во фронте волны (разность между максимальным давлением во фронте ударной волны и нормальным атмосферным давлением перед этим фронтом); - скоростной напор воздуха (динамическая нагрузка, создаваемая потоком воздуха движущимся в волне); - время действия избыточного давления.
В фазе сжатия ударной волны давление выше атмосферного, а в фазе разрежения - ниже. Наибольшее давление воздуха наблюдается на внешней границе фазы сжатия - во фронте волны. Поражение сооружений При воздействии воздушной ударной волны здания и сооружения могут получать полные, сильные, средние и слабые разрушения. Разрушение малоразмерных сооружений происходит в основном под действием скоростного напора воздуха. Полное разрушение характеризуется обрушиванием всех стен и перекрытий. Из обломков образуются завалы. Восстановление зданий невозможно. Сильное разрушение характеризуется обрушиванием части стен и перекрытий. В многоэтажных домах сохраняются нижние этажи. Использование и восстановление этих зданий невозможно или нецелесообразно. Среднее разрушение характеризуется разрушением главным образом встроенных элементов (внутренних перегородок, дверей, окон, крыш, печных и вентиляционных труб), появлением трещин в стенах, обрушиванием чердачных перекрытий и отдельных участков верхних этажей. Подвалы и нижние этажи пригодны для временного использования после разборки завалов над входами. Вокруг зданий завалов не образуется. Восстановление зданий возможно (капитальный ремонт). Слабые разрушения характеризуются поломкой оконных и дверных заполнений, легких перегородок, появлением трещин в стенах верхних этажей. Восстановление возможно силами работников объектов полиграфии (ОЭ). Поражение людей Поражения, возникающие под действием ударной волны, подразделяются на легкие, средние, тяжелые и крайне тяжелые (смертельные). Легкие поражения возникают при избыточном давлении во фронте ударной волны Дpф = 20-40 кПа (0,2-0,4 кгс/см2) и характеризуются легкой контузией, временной потерей слуха, ушибами и вывихами. Средние поражения возникают при избыточном давлении во фронте ударной волны Дpф= 40-60 кПа (0,4-0,6 кгс/см2) и характеризуются травмами мозга с потерей человеком сознания, повреждением органов слуха, кровотечениями из носа и ушей, переломами и вывихами конечностей. Тяжелые и крайне тяжелые поражения возникают при избыточных давлениях соответственно Дpф= 60-100 кПа (0,6-1,0 кгс/см2) и Дpф > 100 кПа (1,0 кгс/см2) и сопровождаются травмами мозга с длительной потерей сознания, повреждением внутренних органов, тяжелыми переломами конечностей и т.д.
|
||||
Последнее изменение этой страницы: 2016-06-28; просмотров: 360; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.225.54.199 (0.007 с.) |