Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Технические характеристики ЖК-монитора

Поиск

Разрешение: Горизонтальный и вертикальный размеры, выраженные в пикселах. В отличие от ЭЛТ-мониторов, ЖК имеют одно, "родное", физическое разрешение, остальные достигаются интерполяцией.

Размер точки: расстояние между центрами соседних пикселов. Непосредственно связан с физическим разрешением.

Соотношение сторон экрана(формат): Отношение ширины к высоте, например: 5:4, 4:3, 5:3, 8:5, 16:9, 16:10.

Видимая диагональ: размер самой панели, измеренный по диагонали. Площадь дисплеев зависит также от формата: монитор с форматом 4:3 имеет большую площадь, чем с форматом 16:9 при одинаковой диагонали.

Контрастность: отношение яркостей самой светлой и самой темной точек. В некоторых мониторах используется адаптивный уровень подсветки с использованием дополнительных ламп, приведенная для них цифра контрастности(так называемая динамическая) не относится к статическому изображению.

Яркость: количество света, излучаемое дисплеем, обычно измеряется в канделах на квадратный метр.

Время отклика: минимальное время, необходимое пикселу для изменения своей яркости. Методы измерения неоднозначны.

Угол обзора: угол, при котором падение контраста достигает заданного, для разных типов матриц и разными производителями считается по-разному, и часто сравнению не подлежит.

Тип матрицы: технология, по которой изготовлен ЖК-дисплей

Входы: (напр, DVI, D-SUB, HDMI и пр.).

Технологии

 

Основные технологии при изготовлении ЖК дисплеев: TN+ film, IPS и MVA. Различаются эти технологии геометрией поверхностей, полимера, управляющей пластины и фронтального электрода. Большое значение имеют чистота и тип полимера со свойствами жидких кристаллов, примененный в конкретных разработках. Время отклика ЖК мониторов, сконструированных по технологии SXRD (англ. Silicon X-tal Reflective Display) - кремниевая отражающая жидкокристаллическая матрица), уменьшено до 5 мс. Компании Sony, Sharp и Philips совместно разработали технологию PALC (англ. Plasma Addressed Liquid Crystal - плазменное управление жидкими кристаллами), которая соединила в себе преимущества LCD (яркость и сочность цветов, контрастность) и плазменных панелей (большие углы видимости по горизонту, H, и вертикали, V, высокую скорость обновления). В качестве регулятора яркости в этих дисплеях используются газоразрядные плазменные ячейки, а для цветовой фильтрации применяется ЖК-матрица. ТехнологияPALC позволяет адресовать каждый пиксель дисплея по отдельности, а это означает непревзойденную управляемость и качество изображения.

TN+film (Twisted Nematic + film)

Макрофотография TN+ film матрицы монитора NEC LCD1770NX. На белом фоне - стандартный курсор Windows.

 

Часть " film " в названии технологии означает дополнительный слой, применяемый для увеличения угла обзора (ориентировочно - от 90° до 150°). В настоящее время приставку " film " часто опускают, называя такие матрицы просто TN. К сожалению, способа улучшения контрастности и времени отклика для панелей TN пока не нашли, причем время отклика у данного типа матриц является на существующий момент одно из лучших, а вот уровень контрастности - нет.

Матрица TN + film работает следующим образом: если к субпикселам не прилагается напряжение, жидкие кристаллы (и поляризованный свет, который они пропускают) поворачиваются друг относительно друга на 90° в горизонтальной плоскости в пространстве между двумя пластинами. И так как направление поляризации фильтра на второй пластине составляет угол в 90° с направлением поляризации фильтра на первой пластине, свет проходит через него. Если красные, зеленые и синие субпиксели полностью освещены, на экране образуется белая точка.

IPS (In-Plane Switching)

Технология In- Plane Switching была разработана компаниями Hitachi и NEC и предназначалась для избавления от недостатковTN + film. Однако, хотя с помощью IPS удалось добиться увеличения угла обзора до 170°, а также высокой контрастности и цветопередачи, время отклика осталось на низком уровне.

Если к матрице IPS не приложено напряжение, молекулы жидких кристаллов не поворачиваются. Второй фильтр всегда повернут перпендикулярно первому, и свет через него не проходит. Поэтому отображение черного цвета близко к идеалу. При выходе из строя транзистора "битый" пиксель для панели IPS будет не белым, как для матрицы TN, а черным.

При приложении напряжения молекулы жидких кристаллов поворачиваются перпендикулярно своему начальному положению и пропускают свет.

IPS в настоящее время вытеснено технологией S-IPS (Super-IPS, Hitachi 1998 год), которая наследует все преимущества технологии IPS с одновременным уменьшением времени отклика. Но, несмотря на то, что цветность S-IPS панелей приблизилась к обычным мониторам CRT, контрастность все равно остается слабым местом. S-IPS активно используется в панелях размером от 20",LG.Philips и NEC остаются единственными производителями панелей по данной технологии.

Макрофотография S-IPS матрицы монитора NEC 20 WGX2 Pro. На оранжевом фоне- стандартный курсор Windows.

 

AS-IPS - технология Advanced Super IPS (Расширенная Супер- IPS), также была разработана корпорацией Hitachi в 2002 году. В основном улучшения касались уровня контрастности обычных панелей S-IPS, приблизив его к контрастности S-PVAпанелей. AS-IPS также используется в качестве названия для мониторов корпорации NEC (например NEC LCD20WGX2) созданных по технологии S-IPS, разработанной консорциумом LG.Philips.

A-TW-IPS - Advanced True White IPS (Расширенная IPS с Настоящим Белым), разработано LG.Philips для корпорации NEC. Представляет собой S-IPS панель с цветовым фильтром TW (True White - Настоящий белый) для придания белому цвету большей реалистичности и расширению цветового диапазона. Этот тип панелей используется при создании профессиональных мониторов для использования в фотолабораториях и/или издательствах.

AFFS - Advanced Fringe Field Switching (неофициальное название S-IPS Pro). Технология является дальнейшим улучшениемIPS, разработана компанией BOE Hydis в 2003 году. Усиленная мощность электрического поля позволила добиться еще больших углов обзора и яркости, а также уменьшить межпиксельное расстояние. Дисплеи на основе AFFS в основном применяются в планшетных ПК, на матрицах производства Hitachi Displays.

*VA (Vertical Alignment)

MVA - Multi-domain Vertical Alignment. - Эта технология разработана компанией Fujitsu как компромисс между TN и IPSтехнологиями. Горизонтальные и вертикальные углы обзора для матриц MVA составляют 160°(на современных моделях мониторов до 176-178 градусов), время отклика, правда, примерно в 2 раза больше, чем для матриц S-IPS, а вот цвета отображаются гораздо более точно, чем на старых TN+ Film.

MVA стала наследницей технологии VA, представленной в 1996 году компанией Fujitsu. Жидкие кристаллы матрицы VA при выключенном напряжении выровнены перпендикулярно по отношению ко второму фильтру, то есть не пропускают свет. При приложении напряжения кристаллы поворачиваются на 90°, и на экране появляется светлая точка. Как и в IPS -матрицах, пиксели при отсутствии напряжения не пропускают свет, поэтому при выходе из строя видны как черные точки.

Достоинствами технологии MVA являются глубокий черный цвет и отсутствие, как винтовой структуры кристаллов, так и двойного магнитного поля.

Недостатки MVA в сравнении с S-IPS: пропадание деталей в тенях при перпендикулярном взгляде, зависимость цветового баланса изображения от угла зрения, большее время отклика.

Аналогами MVA являются технологии:

· PVA (Patterned Vertical Alignment) от Samsung.

· Super PVA от Samsung.

· Super MVA от CMO.

Матрицы MVA /PVA считаются компромиссом между TN и IPS, как по стоимости, так и по потребительским качествам

Преимущества и недостатки

 

В настоящее время ЖК-мониторы являются основным, бурно развивающимся направлением в технологии мониторов. К их преимуществам можно отнести: малый размер и вес в сравнении с ЭЛТ. У ЖК-мониторов, в отличие от ЭЛТ, нет видимого мерцания, дефектов фокусировки и сведения лучей, помех от магнитных полей, проблем с геометрией изображения и четкостью. Энергопотребление ЖК-мониторов в 2-4 раза меньше, чем у ЭЛТ и плазменных экранов сравнимых размеров. Энергопотребление ЖК мониторов на 95 % определяется мощностью ламп подсветки или светодиодной матрицы подсветки (англ. backlight - задний свет) ЖК-матрицы. Во многих современных мониторах для настройки пользователем яркости свечения экрана используется широтно-импульсная модуляция ламп подсветки частотой от 150 до 400 и более Герц. Светодиодная подсветка в основном используется в небольших дисплеях, хотя в последние годы она все шире применяется в ноутбуках и даже в настольных мониторах. Несмотря на технические трудности ее реализации, она имеет и очевидные преимущества перед флуоресцентными лампами, например более широкий спектр излучения, а значит, и цветовой охват. С другой стороны, ЖК-мониторы имеют и некоторые недостатки, часто принципиально трудноустранимые, например:

В отличие от ЭЛТ, могут отображать четкое изображение лишь в одном ("штатном") разрешении. Остальные достигаются интерполяцией с потерей четкости. Причем слишком низкие разрешения (например 320x200) вообще не могут быть отображены на многих мониторах. Цветовой охват и точность цветопередачи ниже, чем у плазменных панелей и ЭЛТ соответственно. На многих мониторах есть неустранимая неравномерность передачи яркости (полосы в градиентах).

Многие из ЖК-мониторов имеют сравнительно малый контраст и глубину черного цвета. Повышение фактического контраста часто связано с простым усилением яркости подсветки, вплоть до некомфортных значений. Широко применяемое глянцевое покрытие матрицы влияет лишь на субъективную контрастность в условиях внешнего освещения. Из-за жестких требований к постоянной толщине матриц существует проблема неравномерности однородного цвета (неравномерность подсветки).

· У Фактическая скорость смены изображения также остается ниже, чем у ЭЛТ и плазменных дисплеев. Технология overdrive решает проблему скорости лишь частично.

· Зависимость контраста от угла обзора до сих пор остается существенным минусом технологии.

· Массово производимые ЖК-мониторы более уязвимы, чем ЭЛТ. Особенно чувствительна матрица, незащищенная стеклом. При сильном нажатии возможна необратимая деградация. Также существует проблема дефектных пикселей.

Плазменная панель

Газоразрядный экран (также широко применяется английская калька "плазменная панель") - устройство отображения информации, монитор, использующее в своей работе явления электрического разряда в газе и возбуждаемого им свечения люминофора.

Конструкция

 

Плазменная панель представляет собой матрицу газонаполненных ячеек, заключенных между двумя параллельными стеклянными поверхностями. В качестве газовой среды обычно используется неон или ксенон. Разряд в газе протекает между прозрачным электродом на лицевой стороне экрана и адресными электродами, проходящими по его задней стороне. Газовый разряд вызывает ультрафиолетовое излучение, которое, в свою очередь, инициирует видимое свечение люминофора. В цветных плазменных панелях каждый пиксель экрана состоит из трех идентичных микроскопических полостей, содержащих инертный газ (ксенон) и имеющих два электрода, спереди и сзади. После того, как к электродам будет приложено сильное напряжение, плазма начнет перемещаться. При этом она излучает ультрафиолетовый свет, который попадает на люминофоры в нижней части каждой полости. Люминофоры излучают один из основных цветов: красный, зеленый или синий. Затем цветной свет проходит через стекло и попадает в глаз зрителя. Таким образом, в плазменной технологии пиксели работают, подобно люминесцентным трубкам, но создание панелей из них довольно проблематично. Первая трудность - размер пикселя. Суб-пиксель плазменной панели имеет объем 200 мкм x 200 мкм x 100 мкм, а на панели нужно уложить несколько миллионов пикселей, один к одному. Во-вторых, передний электрод должен быть максимально прозрачным. Для этой цели используется оксид индия и олова, поскольку он проводит ток и прозрачен. К сожалению, плазменные панели могут быть такими большими, а слой оксида настолько тонким, что при протекании больших токов на сопротивлении проводников будет падение напряжения, которое сильно уменьшит и исказит сигналы. Поэтому приходится добавлять промежуточные соединительные проводники из хрома - он проводит ток намного лучше, но, к сожалению, непрозрачен.

 

Также, требуется подобрать правильные люминофоры. Они зависят от требуемого цвета:

Зеленый: Zn2SiO4:Mn2+ / BaAl12O19:Mn2+

Красный: Y2O3:Eu3+ / Y0,65Gd0,35BO3:Eu3

Синий: BaMgAl10O17:Eu2+

Три этих люминофора дают свет с длиной волны между 510 и 525 нм для зеленого, 610 нм для красного и 450 нм для синего.

Последней проблемой остается адресация пикселей, поскольку, как мы уже видели, чтобы получить требуемый оттенок нужно менять интенсивность цвета независимо для каждого из трех суб-пикселей. На плазменной панели 1280x768 пикселей присутствует примерно три миллиона суб-пикселей, что дает шесть миллионов электродов. Как вы понимаете, проложить шесть миллионов дорожек для независимого управления суб-пикселями невозможно, поэтому дорожки необходимо мультиплексировать. Передние дорожки обычно выстраивают в цельные строчки, а задние - в столбцы. Встроенная в плазменную панель электроника с помощью матрицы дорожек выбирает пиксель, который необходимо зажечь на панели. Операция происходит очень быстро, поэтому пользователь ничего не замечает, - подобно сканированию лучом на ЭЛТ-мониторах.

OLED

 

OLED (англ. Organic Light-Emitting Diode - органический светодиод) - многослойные тонкопленочные структуры, изготовленные из органических соединений, которые эффективно излучают свет при пропускании через них электрического тока. Основное применение технология OLED находит при создании устройств отображения информации (дисплеев).

Принцип действия

 

Для создания органических светодиодов (OLED)используются тонкопленочные многослойные структуры, состоящие из слоев нескольких полимеров. При пропускании через такую структуру электрического тока инжектируемые из контактов электроны и дырки по слоям 2 и 4 с высокой электронной и дырочной проводимостью подводятся к активной области 3, в которой они захватываются на электронные состояния молекулы красителя и возбуждают в ней флуоресцентное или фосфоресцентное излучение.

Преимущества в сравнении c LCD-дисплеями

· меньшие габариты и вес

· отсутствие необходимости в подсветке

· отсутствие такого параметра как угол обзора - изображение видно без потери качества с любого угла

· более качественная цветопередача (высокий контраст)

· более низкое энергопотребление при той же яркости

· возможность создания гибких экранов

Яркость. Максимальная яркость OLED - 100 000 кд/кв. м. (У ЖК-панелей максимум составляет 500 кд/кв. м, причем такая яркость в ЖКИ достигается только при определенных условиях). При освещении LCD -дисплея ярким лучом света появляются блики, а картинка на OLED -экране останется яркой и насыщенной при любом уровне освещенности (даже при прямом попадании солнечных лучей на дисплей).

Контрастность. Здесь OLED также лидер. Устройства, снабженные OLED -дисплеями, обладают контрастностью 1000000:1 (Контрастность LCD 1300:1, CRT 2000:1)

Углы обзора. Технология OLED позволяет смотреть на дисплей с любой стороны и под любым углом, причем без потери качества изображения.

Энергопотребление. Достаточно низкое энергопотребление - около 25Вт (у LCD - 25-40Вт). КПД OLED-дисплея близко к 100 %, у LCD -90 %. Энергопотребление же FOLED, PHOLED еще ниже.

Основные направления исследований разработчиков OLED-панелей Схема 2х слойной OLED -панели: 1. Катод(-), 2. Горячий катод, 3. Выделение излучения, 4. Проводящий слой, 5. Анод (+)

PHOLED

PHOLED (Phosphorescent OLED) - используют принцип электрофосфоресценции, чтобы преобразовать до 100 % электрической энергии в свет. К примеру, традиционные флуоресцентные OLED преобразовывают в свет приблизительно 25-30 % электрической энергии. Из-за их чрезвычайно высокого уровня эффективности энергии, даже по сравнению с другим OLED, PHOLED изучаются для потенциального использования в больших дисплеях типа телевизионных мониторов или экранов для потребностей освещения. Потенциальное использование PHOLED для освещения: можно покрыть стены гигантскими PHOLED -дисплеями. Это позволило бы всем комнатам освещаться равномерно, вместо использования лампочек, которые распределяют свет неравномерно по комнате. Также к преимуществом PHOLED -дисплеев можно отнести яркие, насыщенные цвета, а также достаточно долгий срок службы.

TOLED

TOLED - прозрачные светоизлучающие устройства

TOLED (Transparent and Top-emitting OLED) - технология, позволяющая создавать прозрачные (Transparent) дисплеи, а также достигнуть более высокого уровня контрастности.

Прозрачные TOLED -дисплеи: направление излучения света может быть только вверх, только вниз или в оба направления (прозрачный). TOLED может существенно улучшить контраст, что улучшает читабельность дисплея при ярком солнечном свете.

Так как TOLED на 70 % прозрачны при выключении, то их можно крепить прямо на лобовое стекло автомобиля, на витрины магазинов или для установки в шлеме виртуальной реальности.. Также прозрачность TOLED позволяет использовать их с металлом, фольгой, кремниевым кристаллом и другими непрозрачными подложками для дисплеев с отображением вперед (могут использоваться в будущих динамических кредитных картах). Прозрачность экрана достигается при использовании прозрачных органических элементов и материалов для изготовления электродов.

FOLED

FOLED (Flexible OLED) - главная особенность – гибкость OLED- дисплея. Используется пластик или гибкая металлическая пластина в качестве подложки с одной стороны, и OLED -ячеек и герметичной тонкой защитной пленки - с другой. Преимущества FOLED: ультратонкость дисплея, сверхнизкий вес, прочность, долговечность и гибкость, которая позволяет применять OLED- панели в самых неожиданных местах. (Раздолье для фантазии - область возможного применения OLED весьма велика).

SOLED

Staked OLED - технология экрана от UDC (сложенные OLED). SOLED используют следующую архитектуру: изображение подпикселов складывается (красные, синие и зеленые элементы в каждом пикселе) вертикально вместо того, чтобы располагаться рядом, как это происходит в ЖКИ-дисплее или электронно-лучевой трубке. В SOLED каждым элементом подпиксела можно управлять независимо. Цвет пиксела может быть отрегулирован при изменении тока, проходящего через три цветных элемента (в нецветных дисплеях используется модуляция ширины импульса). Яркостью управляют, меняя силу тока. Приемущества SOLED: высокая плотность заполнения дисплея органическими ячейками, посредством чего достигается хорошее разрешение, а значит, высококачественная картинка.(В SOLED -дисплеях в 3 раза улучшено качество изображения в сравнении с ЖКИ и ЭЛТ).

Passive/Active Matrix

Каждый пиксель цветного OLED -дисплея формируется из трех составляющих - органических ячеек, отвечающих за синий, зеленый и красный цвета. В основе OLED - пассивные и активные матрицы управления ячейками.

 

Пассивная матрица представляет собой массив анодов, расположенных строками, и катодов, расположенных столбцами. Чтобы подать заряд на определенный органический диод, необходимо выбрать нужный номер катода и анода, на пересечении которых находится целевой пиксель, и пустить ток. Используется в монохромных экранах с диагональю 2-3 дюйма (дисплеи сотовых телефонов, электронных часов, различные информационные экраны техники). Активная матрица: как и в случае LCD -мониторов, для управления каждой ячейкой OLED используются транзисторы, запоминающие необходимую для поддержания светимости пикселя информацию. Управляющий сигнал подается на конкретный транзистор, благодаря чему ячейки обновляются достаточно быстро. Используется технология TFT (Thin Film Transistor) - тонкопленочного транзистора. Создается массив транзисторов в виде матрицы, который накладывается на подложку прямо под органический слой дисплея. Слой TFT формируется из поликристального или аморфного кремния. Также идут разработки O- TFT (Organic TFT) - технологии органических транзисторов.

Трудности

· Маленький срок службы люминофоров некоторых цветов (порядка 2-3 лет)

· Как следствие первого, невозможность создания долговечных полноценных TrueColor дисплеев

· Дороговизна и неотработанность технологии по созданию больших матриц

· Главная проблема для OLED - время непрерывной работы должно быть не меньше 15 тыс. часов, а "красный" OLED и "зеленый"OLED могут непрерывно работать на десятки тысяч часов дольше, чем "синий" OLED.

Это визуально искажает изображение.

Видеокарта

Видеокарта (известна также как графическая плата, графическая карта, видеоадаптер) (англ. videocard) - устройство, преобразующее изображение, находящееся в памяти компьютера, в видеосигнал для монитора.

Обычно видеокарта является платой расширения и вставляется в разъем расширения, универсальный (ISA, VLB,PCI,PCI-Express) или специализированный (AGP), но бывает и встроенной (интегрированной).

Современные видеокарты не ограничиваются простым выводом изображения, они имеют встроенный графический микропроцессор, который может производить дополнительную обработку, разгружая от этих задач центральный процессор компьютера. Например, все современные видеокарты NVIDIA и AMD(ATi) поддерживают приложения OpenGL на аппаратном уровне.

Видеокарты имеют следующие стандарты

Расшифровка
  MDA Monochrome Display Adapter IBM PC
  HGC Hercules Graphics Controller -графический адаптер Геркулес Hercules
  CGA Color Graphics Adapter IBM
  EGA Enhanced Graphics Adapter IBM
  MCGA Multicolor Graphics Adapter IBM
  VGA Video Graphics Array IBM
  SVGA Super VGA - "сверх" VGA  


Поделиться:


Последнее изменение этой страницы: 2016-04-25; просмотров: 2905; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.220.112.210 (0.009 с.)