Термопреобразователи сопротивления 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Термопреобразователи сопротивления



Принцип действия термопреобразователей сопротивления (терморезисторов) основан на изменении электрического сопротивления проводников и полупроводников в зависимости от температуры (рассмотрен ранее).

Платиновые терморезисторы предназначены для измерения температур в пределах от –260 до 1100 0С. Широкое распространение на практике получили более дешевые медные терморезисторы, имеющие линейную зависимость сопротивления от температуры.

Недостатком меди является небольшое ее удельное сопротивление и легкая окисляемость при высоких температурах, вследствие чего конечный предел применения медных термометров сопротивления ограничивается температурой 180 0C. По стабильности и воспроизводимости характеристик медные терморезисторы уступают платиновым. Никель используется в недорогих датчиках для измерения в диапазоне комнатных температур.

Полупроводниковые терморезисторы (термисторы) имеют отрицательный или положительный температурный коэффициент сопротивления, значение которого при 20 0C составляет (2…8)*10–2 (0C)–1, т.е. на порядок больше, чем у меди и платины. Полупроводниковые терморезисторы при весьма малых размерах имеют высокие значения сопротивления (до 1 МОм). В качестве полупров. материала используются оксиды металлов: полупроводниковые терморезисторы типов КМТ - смесь окислов кобальта и марганца и ММТ - меди и марганца.

Полупроводниковые датчики температуры обладают высокой стабильностью характеристик во времени и применяются для изменения температур в диапазоне от –100 до 200 0С.

Термоэлектрические преобразователи (термопары) - принцип действия термопар основан на термоэлектрическом эффекте, который состоит в том, что при наличии разности температур мест соедине­ний (спаев) двух разнородных металлов или полупроводников в контуре возникает электродвижущая сила, называемая термо­электродвижущей (сокращенно термо-ЭДС). В определенном интер­вале температур можно считать, что термо-ЭДС прямо пропор­циональна разности температур ΔT = Т1 – Т0 между спаем и концами термопары.

Соединенные между собой концы термопары, погружаемые в среду, температура которой измеряется, называют рабочим концом термопары. Концы, которые находятся в окружающей среде, и которые обычно присоединяют проводами к измерительной схеме, называют свободными концами. Температуру этих концов необходимо поддерживать постоянной. При этом условии термо-ЭДС Ет будет зависеть только от температуры T1 рабочего конца.

Uвых = Eт = С(Т1 – Т0),

где С – коэффициент, зависящий от материала проводников термопары.

 

Создаваемая термопарами ЭДС сравнительно невелика: она не превышает 8 мВ на каждые 1000С и обычно не превышает по абсолютной величине 70 мВ. Термопары позволяют измерять температуру в диапазоне от –200 до 2200 0С.

Наибольшее распространение для изготовления термоэлектрических преобразователей получили платина, платинородий, хромель, алюмель.

Термопары имеют следующие преимущества: простота изготовления и надёжность в эксплуатации, дешевизна, отсутствие источников питания и возможность измерений в большом диапазоне температур.

Наряду с этим термопарам свойственны и некоторые недостатки - меньшая, чем у терморезисторов, точность измерения, наличие значительной тепловой инерционности, необходимость введения поправки на температуру свободных концов и необхо­димость в применении специальных соединительных проводов.

Инфрокрасные датчики (пирометры) - используют энергию излучения нагретых тел, что позволяет измерять температуру поверхности на расстоянии. Пирометры делятся на радиационные, яркостные и цветовые.

Радиационные пирометры используются для измерения температуры от 20 до 2500 0С, причем прибор измеряет интегральную интенсивность излучения реального объекта.

Яркостные (оптические) пирометры используются для измерения температур от 500 до 4000 0С. Они основаны на сравнении в узком участке спектра яркости исследуемого объекта с яркостью образцового излучателя (фотометрической лампы).

Цветовые пирометры основаны на измерении отношения интенсивностей излучения на двух длинах волн, выбираемых обычно в красной или синей части спектра; они используются для измерения температуры в диапазоне от 800 0С.

Пирометры позволяют измерять температуру в труднодоступных местах и температуру движущихся объектов, высокие температуры, где другие датчики уже не работают.

Кварцевые термопреобразователи

Для измерения температур от – 80 до 250 0С часто используются так называемые кварцевые термопреобразователи, использующие зависимость собственной частоты кварцевого элемента от температуры. Работа данных датчиков основана на том, что зависимость частоты преобразователя от температуры и линейность функции преобразования изменяются в зависимости от ориентации среза относительно осей кристалла кварца. Данные датчики широко используются в цифровых термометрах.

 

Пьезоэлектрические датчики

Действие пьезоэлектрических датчиков основано на исполь­зовании пьезоэлектрического эффекта (пьезоэффекта), заключаю­щегося в том, что при сжатии или растяжении некоторых кристал­лов на их гранях появляется электрический заряд, величина ко­торого пропорциональна действующей силе.

Пьезоэффект обратим, т. е. приложенное электрическое на­пряжение вызывает деформацию пьезоэлектрического образца - сжатие или растяжение его соответственно знаку приложенного напряжения. Это явление, называемое обратным пьезоэффектом, используется для возбуждения и приема акустических колеба­ний звуковой и ультразвуковой частоты.

Используются для измерения сил, давления, вибрации и т.д.

Оптические (фотоэлектрические) датчики

Различают аналоговые и дискретные оптические датчики. У аналоговых датчиков выходной сигнал изменяется пропорционально внешней освещенности. Основная область применения – автоматизированные системы управления освещением.

Датчики дискретного типа изменяют выходное состояние на противоположное при достижении заданного значения освещенности.

Фотоэлектрические датчики могут быть применены практически во всех отраслях промышленности. Датчики дискретного действия используются как своеобразные бесконтактные выключатели для подсчета, обнаружения, позиционирования и других задач на любой технологической линии.

Оптический бесконтактный датчик, регистрирует изменение светового потока в контролируемой области, связанное с изменением положения в пространстве каких-либо движущихся частей механизмов и машин, отсутствия или присутствия объектов. Благодаря большим расстояниям срабатывания оптические бесконтактные датчики нашли широкое применение в промышленности и не только.

Оптический бесконтактный датчик состоит из двух функциональных узлов, приемника и излучателя. Данные узлы могут быть выполнены как в одном корпусе, так и в различных корпусах.

По методу обнаружения объекта фотоэлектрические датчики подразделяются на 4 группы:

1) пересечение луча - в этом методе передатчик и приемник разделены по разным корпусам, что позволяет устанавливать их напротив друг друга на рабочем расстоянии. Принцип работы основан на том, что передатчик постоянно посылает световой луч, который принимает приемник. Если световой сигнал датчика прекращается, в следствии перекрытия сторонним объектом, приемник немедленно реагирует меняя состояние выхода.

Отражение от рефлектора - в этом методе приемник и передатчик датчика находятся в одном корпусе. Напротив датчика устанавливается рефлектор (отражатель). Датчики с рефлектором устроены так, что благодаря поляризационному фильтру они воспринимают отражение только от рефлектора. Это рефлекторы, которые работают по принципу двойного отражения. Выбор подходящего рефлектора определяется требуемым расстоянием и монтажными возможностями.



Поделиться:


Последнее изменение этой страницы: 2016-04-23; просмотров: 49; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.133.108.241 (0.008 с.)