Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Геофизические методы поисковСодержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
ГФМ применяются для выявления, изучения и оконтуривания геофизических полей (ГФП), выделения и оконтуривания геофизических аномалий (ГФА), связанных с полезными ископаемыми. Особенно важны при плохой обнаженности пород и при поисках таких видов ПИ, физсвойства которых заметно отличаются от свойств вмещающих их пород. Выделяются авиа-, наземный и скважинный (каротажный) варианты геофизических работ (ГФР). Наземные варианты этих методов осуществляются чаще путем проведения пешеходных профилей (значительно реже с использованием транспорта). ГФМ изучаются специальными курсами, где подробно рассматриваются физосновы, техсредства, условия применения метода, приемы обработки и интерпретации наблюдений. Геолог: ставит задачи ГФР, вместе с геофизиком определяет комплекс методов, задает необходимую детальность, принимает у геофизиков результаты работ и выполняет их геологическую интерпретацию (в т.ч. давая геофизикам задания по определению глубин возмущающих объектов, их размеров и т.п.). ГФМ классифицируются: 1) по характеру изучаемых ГФП и аномалий: 2) магнитометрические 3) гравиметрические 4) сейсмометрические 5) электрометрические (электроразведочные) 6) радиометрические 7) ядернофизические 8) термометрические 9) биофизические; 10) по возможностям обнаружения полезных ископаемых: - прямые - косвенные. Прямые поиски пол.иск. геофизическими методами – идеальная цель, достижимая не часто. Поэтому преимущественно ГФМ дают косвенную (опосредованную) информацию о возможных ПИ, способствуя созданию геолого-структурной основы поисков, выявлению и оконтуриванию элементов геологического строения, контролирующих пространственное размещение ПИ. Правильному использованию ГФМ должны предшествовать петрофизические исследования горных пород и руд – определение и статистические расчеты средних показателей (среднее, дисперсия, среднее квадратичное отклонение, коэффициент вариации) магнитных, плотностных, электрических (удельное сопротивление, проводимость), радиоактивных и др. свойств.
Магнитометрический метод – прямой для поисков и выявления м-ний пол.иск. с высокой магнитной восприимчивостью (магнетитовые, пирротиновые руды – в аэро- и наземном варианте), но чаще – косвенный для оконтуривания геологических образований (комплексов пород), представляющих интерес для прогноза пол.иск. Например: для оконтуривания ореолов измененных, в процессе гидротермальных изменений, пород, вмещающих медно-никелевое, хромитовое, титаномагнетитовое, медноколчеденное, меднопорфировое, свинцово-цинковое и др. типы оруденения. Это связано с тем, что в процессе гидротермальных изменений вмещающих пород происходит разложение магнитных минералов и замещение их немагнитными. Магнитометрическая съемка (МС) позволяет расчленять интрузивные комплексы, иногда выделять среди них рудоносные (напр., аляскитовые граниты с редкометальным оруденением). МС используется: 11) для прослеживания поясов даек и штоков основного и среднего состава, нередко контролирующих размещение постмагматических м-ний; 12) при прослеживании зон разрывных нарушений, которые контролируют размещение многих типов постмагматических месторождений; 13) как косвенный метод поисков аллювиальных россыпей золота, касситерита, вольфрамита, если тяжелая фракция аллювия этих россыпей сопровождается концентрацией магнетита. Во всех случаях метод эффективен тогда, когда объекты поисков рсположены в разрезах слабомагнитных пород. МС (МР) выполняется практически в любых ландшафтно-географических условиях, Применяемые магнитометры просты и удобны для перемещения (особенно последние модели с цифровой индикацией (??? Название, марка). Каппа-метрия (современные цифровые каппометры позволяют диагностировать породы по магнитным свойствам, расчленять геологический разрез, заверять магнитные ГФА. Большие возможности метода, относительная простота и экономичность делают магнитометрический метод достаточно массовым и широко применяемым. Масштаб и методика работ проектируются с учетом ранее выполненных МС, исходя из конкретных целей поисков.
Гравиметрический метод как прямой метод поисков используется для выявления положительных аномалий силы тяжести, с которыми могут быть связаны крупные залежи медноколчеданных, хромитовых, баритовых руд. Отрицательные аномалии силы тяжести (Δg) в определенных геологических условиях связаны с соляными штоками. Как косвенный метод – для выявления и оконтуривания тектонических депрессий (грабенов), иногда перспективных на уголь, бокситы, золото; гранитных интрузивов, перспективынх на Sn, W, Mo, RM. Метод позволяет фиксировать тектонические блоки, разделенные разломами, которые фиксируются гравитационными ступенями в поле силы тяжести. Проектируется там, где развиты интрузивные тела, отмечается блоковое строение, ожидаются м-ния, создающие отчетливые гравиметрические аномалии.
Сейсморазведочный метод – основной для поисков м-ний нефти и газа -позволяет изучать поверхность отражающих плоскостей и выявлять положительные куполообразные структуры на платформах (в осадочных бассейнах), перспективные для локализации нефти и газа. Проводится массовое сейсмопрофилирование по площадям нефтегазоносных осадочных бассейнов. Система геограверсов РФ в увязке с глубокими и сверхглубокими скважинами. Сейсморазведочные данные по глубинной структуре площадей необходимо обязательно учитывать и использовать для построения геодинамических и тектонических карт. Для твердых ПИ – как косвенный метод для расшифровки рудовмещающих структур. В Казахстане – устанавливалось положение плоскостей разломов, контролирующих размещение рудных м-ний. Метод применим для расшифровки строения речных долин, глубин залегания плотика при поисках россыпей в варианте микросейсмики (кувалда, плита, один или несколько приемников; разносы приемников до 150-200 м).
Электрометрические методы – широко используются для поисков различных видов ПИ. Как прямые – для выявления сульфидных м-ний, как косвенные – для многих других ПИ. Большое число модификаций, в связи с возможностью использования широкого диапазона частот, а также различных источников тока – естественных и искусственных, постоянного и переменного тока.
Классификация электрометрических методов (по В.В. Федынскому)
Различные модификации ЭР успешно применяются в качестве прямых поисковых методов для выявления сплошных и вкрапленных сульфидных и оловянных м-ний, некоторых типов углей и м-ний графита. Один из наиболее эффективных методов ЭР поисков сульфидных м-ний с вкрапленными рудами – ВП, основанный на изучении полей поляризации, т.е. разностей потенциалов, возникающих под воздействием длительных импульсов постоянного или переменного тока. Особенность – большая стабильность величины кажущейся поляризуемости нормального поля. Удается выявлять относительно слабые аномалии, связанные с глубокозалегающими объектами. Метод применим для колчеданного и кварц-касситеритового оруденения. Важны для поисков м-ний сплошных сульфидных руд (колчеданных, медноколчеданных, полиметаллических, графитовых) метод естественного поля (ЕП) и метод переходных процессов (МПП) – из группы низкочастотных элетрометодов. Основан на изучении индуктивно возбуждаемого неустановившегося поля. Высокочастотные методы (радиокип, радиоволновое просвечивание) для сверхдлинных волн применим для поисков высокоомных золото-кварцевых жил и даек, для определения мощности рыхлых отложений при однородном сопротивлении коренных пород, для поисков кимберлитовых трубок под покровными отложениями. Проектировать ЭР методы надо в зависимости от конкретных геологических условий и характера возможных аномалий.
Радиометрические методы основаны на измерении естественной радиоактивности (суммарное –интегральное- гамма-излучение либо дифференциальная его регистрация – СП-4М – U, Th, K) горных пород и минералов. Как прямые – для поисков м-ний радиоактивных руд и как косвенные – для м-ний нерадиоактивных элементов (фосфоритов, танталовых, ниобиевых, TR руд. Аэрогаммасъемка (АГСМ) м-ба 1:25000-1:10000. Автогаммасъемки. Радиометрическая съемка с обычными радиометрами СРП-68-01 проводится одновременно с геолсъемкой и поисковыми пешеходными маршрутами. (более подробно о методике и фоне-аномальных значениях; о применении для геокартирования). При детальных поисках профильная, шпуровая, плужная, авто-гамма-съемка. Гамма-каротаж скважин.Глубинность гамма-съемки очень незначительна (от нескольких см до нескольких метров), за счет развития вторичных ореолов рассеяния в покрове – до 10 м и более. Применяется как косвенный метод на редкие и рассеянные элементы, вольфрам, олово, молибден, бериллий, литий, фосфориты, калийные соли.
Ядернофизические методы. Основаны на возбуждении радиоактивности с помощью искусственных источников. Применятеся для ускоренного анализа хим. элементов в различных пробах. В перспективе – в вариантах перемещения приборов по профилям и маршрутам с получением графиков содержаний отдельных элементов в породах и проявлениях. Применяются при исследовании Луны и других планет (на «Луноходах»). Делятся на: Стационарные (крупногабаритные приборы и аппараты (реакторный нейтронный активационный анализ с большой чувствительностью); Полевые (с компактной аппаратурой), в том числе: Рентгено-радиометрические методы – основаны на возбуждении атомов анализируемых элементов с помощью первичного излучения от радиоизотопного источника и последующем анаилзе спектрального состава и измерения интенсивности характеристического излучения возбужденных атомов с помощью специальной радиометрической аппаратуры. Источники возбуждения – изотопы кобальт-60, сурьма-124, цезий-133, ртуть-203, тулий-170 и др. На этом принципе приборы «Минерал-3 или -4» (от железа до висмута), «Гагара» и др. Ныне – «Золотинка» - Au, Ag, Pb, Zn идр. Другие разновидности (на поглощении различных видов излучений – гамма, бета, нейтронного): нейтронно-активационный, фотонейтронный, метод ядерного гамма-резоненса и др. Приборы «Нейтрон-2» - для определения содержаний кремния и алюминия в бокситоносных породах, «Боксит» - на использовании альфа-активационного метода. «Бериллометр», «Берилл» - для определения содержаний бериллия: изотоп сурьма-124 создает поток гамма-квантов с энергиями более 1,66 МэВ, выбивающий из ядер бериллия поток нетронов, интенсивность которого пропорциональна содержанию бериллия в пробе. Прибор для определения бора на автомобиле. Приборы, основанные на рентгено-радиометрических методах определения содержаний хим.элементов. Примеры: автомобильная рентгено-флуресцентная съемка с непрерывным определением рудных компонентов (в будущем может заменить литогеохимичекую съемку). Пока эффективна для определения содержаний элементов, которые характеризуются высокими содержаниями (Fe, Mn, Ti, Zr, кроме этого, Cu, Zn, Ba, Pb). Применялась на железорудных м-ниях Кривого Рога. Вариации приборов для «приборных» поисков золота – тип миноискателя, тип каппометра. За ядерно-геофизическими методами поисков и оценки полезных ископаемых – большое будущее. Вопросы комплексирования геофизических методов при поисках ПИ. Минимально необходимый стандарт (ГР-200, АГМС-50/25, АГСМ-25). Выбор методов, модификаций и сети, точности, приборной базы. Важность интерпретационной теоретической базы. Тема 10
|
|||||||||||||||||||||||||||
Последнее изменение этой страницы: 2016-04-23; просмотров: 910; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.191.37.129 (0.008 с.) |