Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Декартово (прямое) произведение двух множеств.

Поиск

Числа 25 и 52 записаны с помощью одних и тех же цифр, но числа различны. Здесь важен порядок следования цифр. В том случае, когда в математике важен порядок следования элементов, говорят об упорядоченных наборах элементов. В нашем случае мы имели дело с упорядоченными парами.

Упорядоченной парой называется двухэлементное множество, за каждым элементом которого закреплён номер.

Обозначается: (а, b) или < а, b>.

Заметим, что (а, b) ¹ (b, а), если а¹ b.

 

Декартовым (прямым) произведением множеств А и В называется множество упорядоченных пар, первый элемент которых принадлежит множеству А, а второй принадлежит множеству В.

Декартово произведение обозначают А´В.

А´В = {(а, b) ½ аÎА, b ÎВ}

Название “произведение” объясняется тем, что число элементов декартова произведения двух конечных множеств А и В равно произведению чисел элементов множеств А и В.

Название “декартово” возникло в честь французского математика Рене Декарта (1596 – 1650), основателя аналитической геометрии.

Пример.

Найдём декартово произведение множеств А и В, если А = {1, 2} и В = {2, 5, 6}.

А ´ В = {(1;2); (1;5); (1;6); (2;2); (2;5); (2;6)}

В ´ А = {(2;1); (2;2); (5;1); (5;2); (6;1); (6;2)}

 

Свойства декартова произведения множеств. (" А, В, С)

1) Не коммутативно (см. пример) А ´ В ¹ В ´ А

2) Не ассоциативно (А ´ В) ´ С ¹ А ´ (В ´ С)

3) Дистрибутивно относительно объединения (АÈВ) ´С = (А´С) È (В´С)

4) Дистрибутивно относительно разности (А \ В) ´С = (А´С) \ (В´С)

 

Декартово произведение двух множеств можно изобразить наглядно с помощью графика или графа.

 

Граф прямого произведения конечных множеств – совокупность точек (вершин графа) и линий (ребра графа), соединяющих их.



Поделиться:


Последнее изменение этой страницы: 2024-06-17; просмотров: 4; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.21.246.53 (0.005 с.)