Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Тема урока: Логарифмы и их свойства.↑ Стр 1 из 2Следующая ⇒ Содержание книги
Поиск на нашем сайте
Тема урока: Логарифмы и их свойства. Цель урока: · рассмотреть понятие логарифма числа и свойства логарифмов; · дать понятие десятичного и натурального логарифма; · овладеть знаниями и умениями использовать основное логарифмическое тождество, формулы перехода от одного основания к другому в процессе решения упражнений; · развивать мышление учащихся при выполнении упражнений; · продолжить формировать умение правильно воспринимать и активно запоминать новую информацию; · научить учащихся определять логарифм числа и его свойства; · вычислять значения несложных логарифмических выражений. Тип урока: Урок первичного закрепления новых знаний. Ход урока:
1. Организационный момент:проверка готовности учащихся к уроку.
Тема сегодняшнего урока - Логарифмы и их свойства (откройте тетради и запишите дату и тему). На этом уроке мы познакомимся с понятием «логарифм», также рассмотрим свойства логарифмов.
Зададим вопрос: 1) В какую степень нужно возвести 5, чтобы получить 25? Очевидно, во вторую. Показатель степени, в которую нужно возвести число 5, чтобы получить 25, равен 2. 2) В какую степень нужно возвести 3, чтобы получить 27? Очевидно, в третью. Показатель степени, в которую нужно возвести число 3, чтобы получить 27, равен 3.
Во всех случаях мы искали показатель степени, в которую нужно что-то возвести, чтобы что-то получить. Показатель степени, в которую нужно что-то возвести называется логарифмом и обозначается log.
Число, которое мы возводим в степень, т.е. основание степени, называется основанием логарифма и записывается в нижнем индексе. Затем пишется число, которое мы получает, т.е. число, которое мы ищем: log5 25=2 Эта запись читается так: «Логарифм числа 25 по основанию 5». Логарифм числа 25 по основанию 5- это показатель степени, в которую нужно возвести 5, чтобы получить 25. Этот показатель равен 2. Аналогично разберём второй пример.
Дадим определение логарифма. Определение. Логарифмом числа b>0 по основанию a>0, a ≠ 1 называется показатель степени, в которую надо возвести число a, чтобы получить число b. Логарифмом числа b по основанию a обозначаетсяloga b. История возникновения логарифма: Логарифмы были введены шотландским математиком Джоном Непером (1550-1617) и математиком Иостом Бюрги (1552-1632). Бюрги пришел к логарифмам раньше, но опубликовал свои таблицы с опозданием (в 1620г.), а первой в 1614г. появилась работа Непера «Описание удивительной таблицы логарифмов». С точки зрения вычислительной практики, изобретение логарифмов можно смело поставить рядом с другими, более древним великим изобретением – нашей десятичной системой нумерации. Через десяток лет после появления логарифмов Непера английский ученый Гунтер изобрел очень популярный прежде счетный прибор – логарифмическую линейку. Она помогала астрономам и инженерам при вычислениях, она позволяла быстро получать ответ с достаточной точностью в три значащие цифры. Теперь ее вытеснили калькуляторы, но без логарифмической линейки не были бы созданы ни первые компьютеры, ни микрокалькуляторы.
Рассмотрим примеры: log327=3; log525=2; log255=1/2; log5 1/125=-3; log-2 (-8)- не существует; log51=0; log44=1
Рассмотрим такие примеры: 10. loga1=0, а>0, a ≠ 1; 20. logaа=1, а>0, a ≠ 1. Эти две формулы являются свойствами логарифма. Ими можно пользоваться при решении задач.
Как перейти из логарифмического равенства к показательному? logаb=с, с – это логарифм, показатель степени, в которую нужно возвести а, чтобы получить b. Следовательно, а степени с равен b: а с= b.
|
||||
Последнее изменение этой страницы: 2024-06-17; просмотров: 10; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.15.17.60 (0.005 с.) |