Электрофизические способы обработки 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Электрофизические способы обработки



Различное влияние импульсных разрядов на металлы и сплавы зависит от их теплофизических констант: температуры плавления и кипения, теплопроводности, теплоемкости и т. д.
Электроконтактная обработка основана на механическом разрушении или формоизменении металлических поверхностей, производимом одновременно с нагревом или расплавлением этих поверхностей электрическим током (рис. 5.8). При этом методе в месте контакта двух токопроводящих поверхностей выделяется тепло ввиду повышенного сопротивления, а также электрического разряда.

Рис. 5.8 Схема электроконтактной обработки:
1 - инструмент; 2- обрабатываемая заготовка.

Разрушение поверхности заготовки при обработке с напряжением свыше 10 В (до 20 - 22 В) происходит в значительной части или полностью в результате электродугового процесса - возникновения множества микро-дуг в месте контакта микронеровностей поверхностей электродов (инструмента и заготовки) (выноска А на рисунке). Движущийся инструмент в этих случаях не только подводит ток и удаляет размягченный металл, но и, благодаря вибрации, способствует возникновению множества прерывистых контактов, необходимых для образования дуговых разрядов.
Основной особенностью электроконтактной обработки является высокая производительность процесса при низком качестве обработки. Производительность может достигать 3000 мм3/с при грубой поверхности и глубине измененного слоя в несколько миллиметров. На мягких режимах производительность составляет около 1 мм3/с при шероховатости поверхности Rz = 80 - 20 мкм и глубине микротрещин на твердых сплавах или закаливающихся сталях до 0,3 - 0,5 мм. Во всех случаях отмечаются наплывы на кромках обработанной поверхности.
Электроконтактная обработка может выполняться как в воздушной, так и в жидкой среде. Производительность обработки почти линейно растет с увеличением напряжения и мощности источника питания, Этот метод применяют, в основном, для обработки крупногабаритных изделий. Он может быть использован для зачистки литейных поверхностей и сварных швов.

 

 

Ультразвуковая обработка. Ультразвуковыми условно называют большую группу технологических процессов и операций разнообразного назначения, осуществляемых с обязательным присутствием механических упругих колебаний с частотой выше 16-18 кГц. В одних процессах ультразвуковые колебания используются для передачи в зону обработки необходимого количества энергии (размерная ультразвуковая обработка твердых материалов), в других служат средством интенсификации процессов (химических и электрохимических).
Ультразвуковая размерная обработка - это направленное разрушение твердых и хрупких материалов при помощи мельчайших зерен абразивного порошка, вводимых в виде суспензии в зазор между торцом специального инструмента и заготовкой и колеблющихся с ультразвуковой частотой. Под ударами зерен абразива скалываются мелкие частицы материала с поверхности заготовки. Обрабатываемая площадь и наибольшая глубина обработки зависят от сечения и свойств магнитострикцнонного материала, из которого изготовлен двигатель-преобразователь. Износ инструмента определяет срок его службы и оказывает существенное влияние на точность обработки. Изнашивание в продольном направлении происходит из-за разрушения торца инструмента при ударах по абразивным зернам и зависит от физико-механических свойств материала инструмента, а также от зернистости абразива. Поперечный износ является следствием побочного резания, которое совершается между боковой поверхностью инструмента и стенкой обрабатываемого отверстия, и зависит от величины паразитных колебаний инструмента в поперечном направлении, геометрии и профиля инструмента.
Ультразвуковой обработке поддаются хрупкие материалы (стекло, твердые сплавы и т. п.). частицы которых скалываются ударами зерен абразива. Вязкие материалы (незакаленная сталь, латунь) плохо обрабатываются ультразвуковым способом, так как в этом случае не происходит сколов. На рис. 5.9 изображена принципиальная схема ультразвуковой обработки. Корпус 1 головки охлаждается водой, которая циркулирует по внутренним каналам.

Рис. 5.9 Схема ультразвуковой обработки.

При прохождении по обмотке 2 переменного тока в сердечнике 3 возникают продольные колебания. Сердечник изготовляется из материала, изменяющего длину при помещении его в переменное электромагнитное поле (явление магнитострикции). Колебания усиливаются в концентраторе 4 и передаются на инструмент 5 для обработки заготовки 6. Между инструментом и заготовкой находится абразивная суспензия. Ультразвуковая обработка используется, в основном, для изготовления отверстии разнообразного профиля в труднообрабатываемых материалах, а также для гравировки и маркировки. Материалом инструмента служат латунь, медь, чугун. Профиль инструмента соответствует профилю обрабатываемого отверстия.



Поделиться:


Последнее изменение этой страницы: 2021-09-25; просмотров: 48; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.135.200.211 (0.006 с.)