Енергетика при руховій діяльності 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Енергетика при руховій діяльності



Згідно із законами термодинаміки, всі види енергії взаємозамінні. Енергія не може бути ні створена ні знищена, вона переходить з однієї форми у іншу і насам кінець перетворюється на тепло. Близько 60-70% усієї енергії в організмі людини перетворюється на тепло.

Вживаючи у їжу овочі й фрукти, а також м'ясо тварин, котрі живляться рослинами, ми отримуємо енергію. Енергія міститься в харчових продуктах у вигляді вуглеводів, жирів та білків. Ці основні компоненти харчових продуктів розщеплюються у клітинах нашого організму, вивільнюючи енергію.

Оскільки енергія поступово перетворюється на тепло, її кількість, що вивільнюється в результаті біологічних реакцій, визначається за кількістю утвореного тепла. У біологічних системах енергія вимірюється у кілокалоріях (ккал). Згідно з визначенням, 1 ккал дорівнює кількості теплової енергії, необхідної для підвищення температури 1 кг води на 1 °С.

Якась кількість вільної енергії у клітинах використовується для розвитку та «ремонту» нашого організму. Такі процеси, як ми вже знаємо, спрямовані на розвиток м'язової маси під впливом тренувальних навантажень та відновлення м'язів після фізичних навантажень або травм. Енергія також необхідна для активного транспорту багатьох речовин, таких, як глюкоза та Са2+ через клітинні мембрани. Певну кількість енергії використовують міофібрили для забезпечення ковзання філаментів актину та міозину, в результаті котрого продукуються м'язове скорочення та сила.

Джерела енергії

Продукти харчування складаються, в основному, з вуглецю, водню, кисню, а при наявності білків — з азоту. Молекулярні зв'язки у харчових продуктах відносно слабкіші, тому при розщепленні вивільнюється невелика кількість енергії. Отже, продукти харчування не використовуються безпосередньо для потреб клітини. Енергія молекулярних зв'язків продуктів харчування хімічно вивільнюється у клітинах організму й зберігається у вигляді високоенергетичного сполучення — аденозинтрифосфату (АТФ).

Утворення АТФ дозволяє клітинам зберігати енергію у цьому високоенергетичному сполученні.

У спокої енергія, необхідна нашому організму, забезпечується за рахунок розщеплення практично однакової кількості вуглеводів та жирів. Білки являють собою «будівельні блоки» і звичайно забезпечують функціонування клітин невеликою кількістю енергії. При збільшенні м'язового зусилля у якості джерела енергії більше використовуються вуглеводи. При максимальному короткочасному навантаженні АТФ майже виключно утворюється за рахунок вуглеводів.

Вуглеводи. Залежність м’язів від вуглеводів під час фізичного навантаження пов'язана з їх наявністю, а також здатністю м'язової системи їх розщеплювати. Вуглеводи насамкінець перетворюються на глюкозу. У стані спокою вуглеводи попадають у м'язи та печінку, а потім перетворюються на більш складну молекулу цукру — глікоген. Глікоген знаходиться у цитоплазмі допоки клітини не використають його для утворення АТФ. Глікоген, що міститься у печінці, може зновуперетворюватися на глюкозу. Він транспортується кров'ю до активних тканин, де й відбувається його метаболізм (розщеплення).

Таблиця 1. Запаси палива та енергії в організмі

Джерело енергії г ккал

Вуглеводи

глікоген печінки 110 451
м'язовий глікоген 250 1025
глюкоза у рідинах організму 15 62
Усього 375 1538

Жири

підшкірний 7,800 70,980
внутрішньом'язовий 0,161 1,465
Всього 7,961 72,445

Примітка. Оцінку зроблено на основі середньої маси тіла 65 кг з вмістом жиру 12 %.

           

Вміст вуглеводів у печінці та скелетних м'язах обмежений; їх вистачає для утворення не більше 2000 ккал енергії. Ця кількість витрачається на те, щоб пробігти 32 км. Запаси жирів достатні для утворення понад 70000 ккал енергії.

Вміст глікогену у печінці та м'язах обмежений, його запаси можуть вичерпатися, якщо у раціоні харчування немає достатньої кількості вуглеводів. Таким чином, поповнення запасу багато у чому залежить від харчових джерел крохмалів та цукру. Без достатнього споживання вуглеводів м'язи і печінка не мають свого основного джерела енергії.

Жири й білки також використовуються як джерела енергії. В організмі міститься значно більше жирів, ніж вуглеводів. Однак жири є менш доступними клітинному метаболізму, оскільки, перш за все, має бути розщеплена складна форма — тригліцерид — на основні компоненти: гліцерин та вільні жирні кислоти. Тільки вільні жирні кислоти використовуються для утворення АТФ.

З однакової кількості жирів та вуглеводів утворюється абсолютно різна кількість енергії, відповідно 9 та 4 ккал. У будь-якому випадку інтенсивність вивільнення енергії з цих сполучень дуже невелика, щоб задовольнити потреби організму в енергії під час інтенсивної м'язової діяльності.

Білки. Процес перетворення білків або жирів на глюкозу називається глюконеогенезом. У результаті серії реакцій білок може перетворитися на жирні кислоти. Це називається ліпогенез.

Білки забезпечують 5-10 % енергії, необхідної для виконання тривалої фізичної вправи. Для утворення енергії використовуються лише основні одиниці білка — амінокислоти.

Щоб бути корисною, енергія має вивільнятися з хімічних сполук з контрольованою інтенсивністю. Частково ця інтенсивність визначається вибором джерела енергії. Якщо використовується велика кількість енергії з одного джерела, клітини розраховують, головним чином, саме на це джерело. Такий вплив наявності енергії називається ефектом масового впливу.

Спеціальні ферменти забезпечують чіткіший контроль інтенсивності вивільнення енергії. Багато з них полегшують розщеплення (катаболізм) хімічних сполучень. Хоча назви ферментів досить складні, всі вони закінчуються суфіксом -аза. Наприклад, фермент, що впливає на АТФ, називається аденозинтрифосфатаза (АТФаза).

БІОЕНЕРГЕТИКА:

УТВОРЕННЯ АТФ

Молекула АТФ   складається з аденозину (молекули аденіну, з'єднаної з молекулою рибози), з'єднаного з трьома групами неорганічного фосфату (Рн). При впливі ферменту АТФази остання фосфатна група відщеплюється від молекули АТФ, швидко вивільнюючи велику кількість енергії (7,6 ккал/моль АТФ). У результаті АТФ розщеплюється на АДФ (аденозиндифосфат) та фосфор.

Процес накопичення енергії в результаті утворення АТФ з інших хімічних джерел називається фосфорилуванням. Внаслідок різних хімічних реакцій фосфатна група приєднується до відносно низькоенергетичного сполучення аденозиндифосфату, перетворюючи його на аденозинтрифосфат. Коли ці реакції здійснюються без наявності кисню, то процес називається анаеробним метаболізмом. Якщо ж у реакції бере участь кисень, то процес називається аеробним метаболізмом, а аеробне перетворення АДФ на АТФ — окиснювальним фосфорилуванням.

Клітини утворюють АТФ за допомогою трьох систем:

- система АТФ-КФ

- гліколітична

- окиснювальна.

СИСТЕМА АТФ-КФ

Найпростішою енергетичною системою є система АТФ-КФ. Окрім АТФ, клітини містять ще одну багату енергією фосфатну молекулу — креатинфосфат (КФ). Енергія, вивільнювана при розщепленні КФ, на відміну від енергії, що вивільнюється при розщепленні АТФ, не використовується безпосередньо для виконання роботи на клітинному рівні. Вона використовується для ресинтезу АТФ, щоб забезпечити його відносно постійне утворення. Вивільненню енергії при розщеплені КФ сприяє фермент креатинкіназа, котрий діє на КФ для відокремлення фосфору від креатину. Вивільнена енергія може бути використана для приєднання Рн до молекули АДФ. При використанні цієї системи (енергія вивільнюється з АТФ в результаті відщеплення фосфатної групи) клітини можуть запобігти вичерпаю запасів АТФ, розщеплюючи КФ і тим самим забезпечуючи енергію для утворення великої кількості АТФ.

Це швидкий процес, котрий може здійснюватися без допомоги будь-яких спеціальних структур клітини. Він може відбуватися й за участю кисню, однак для його здійснення кисень не потрібний, тому систему АТФ-КФ називають анаеробною.

У перші секунди інтенсивної м'язової діяльності кількість АТФ підтримується на відносно постійному рівні, тоді як рівень КФ невпинно знижується, оскільки він використовується для поповнення запасів АТФ. У стані виснаження рівні АТФ та КФ є досить низькими і не можуть забезпечити енергію для наступних скорочень та розслаблень м'язів.

Таким чином, підтримання рівня АТФ за рахунок енергії, що вивільнюється при розщепленні КФ, є обмеженим. Запаси АТФ та КФ є достатніми для задоволення енергетичних потреб м'язів лише протягом 3-15с спринтерського бігу. Після цього м'язам доводиться розраховувати на інші процеси утворення АТФ: гліколітичний та окиснювальний.

ГЛІКОЛІТИЧНА СИСТЕМА

Інше джерело отримання АТФ передбачає вивільнення енергії в результаті розщеплення (лізису) глюкози. Це — гліколітична система, котра включає процес гліколізу, тобто розщеплення глюкози за допомогою спеціальних гліколітичних ферментів. Глюкоза становить близько 99 % усіх цукрів, що циркулюють у крові. Вона надходитьу кров в результаті засвоєння вуглеводів та розщеплення глікогену печінки. Глікоген синтезується з глюкози внаслідок процесу, що називається глікогенезом. Глікоген міститься у печінці або м'язах, доки не стане потрібним. Коли виникає потреба у глікогені, він розщеплюється в результаті процесу глікогенолізу на глюкозо-1 фосфат.

Перш ніж глюкоза або глікоген можуть бути використані для утворення енергії, вони мають трансформуватися у сполучення, котре називається глюкозо-6-фосфат. Для перетворення молекули глюкози необхідна одна молекула АТФ. При розщепленні глікогену глюкозо-6-фосфат утворюється з глюкозо-1 фосфату без витрати енергії.

Гліколіз починається, як тільки утворюється глюкозо-6-фосфат.

Закінчується гліколіз утворенням піровиноградної кислоти. Для цього процесу не потрібний кисень, однак використання кисню визначає «частки» піровиноградної кислоти, утвореної внаслідок гліколізу. Коли ми говоримо про гліколітичну систему, ми маємо на увазі, що процес гліколізу перебігає без участі кисню. У цьому випадку піровиноградна кислота перетворюється на молочну кислоту.

Гліколіз, що є складнішим процесом, ніж система АТФ-КФ, забезпечує розщеплення глікогену на молочну кислоту завдяки 12 ферментним реакціям. Усі ці ферменти знаходяться у цитоплазмі клітин. У результаті гліколізу утворюється 3 молі АТФ на кожний моль розщепленого глікогену. Якщо замість глікогену використовується глюкоза, то утворюється усього 2 молі АТФ, оскільки 1 моль витрачається на перетворення глюкози на глюкозо-6-фосфат.

Ця енергетична система не забезпечує утворення великої кількості АТФ. Незважаючи на це, сукупні дії гліколітичної системи та системи АТФ-КФ забезпечують продукування сили м'язами навіть при обмеженому надходженні кисню. Ці дві системи домінують у перші хвилини виконання вправ високої інтенсивності.

Іншим значним недоліком анаеробного гліколізу є те, що він викликає накопичення молочної кислоти у м'язах та рідинах організму. У спринтерських дисциплінах тривалістю 1-2 хв потреби гліколітичної системи є дуже великими, і рівні вмісту молочної кислоти можуть збільшитися з 1 (показник у стані спокою) до понад 25 ммоль/кг. Таке підкислення м'язових волокон гальмує подальше розщеплення глікогену, оскільки порушує функцію гліколітичних ферментів. Окрім того, кислота знижує здатність волокон зв'язувати кальцій і це може перешкодити скороченню м'язів.

Інтенсивність енерговитрат м'язового волокна під час навантаження може бути у 200 разів вищою, ніж у стані спокою. Гліколітична система та система АТФ-КФ не в змозі забезпечити необхідну кількість енергії.

Молочна кислота і лактат — не одне й те ж сполучення. Молочна кислота має формулу С3Н6О3. Лактат являє собою будь-яку сіль молочної кислоти.   

 

ОКИСНЮВАЛЬНА СИСТЕМА

Останньою системою утворення енергії клітиною є окиснювальна система, найскладніша з трьох енергетичних систем. Процес, в результаті котрого організм для продукування енергії дисимілює сполучення, багаті на енергію, за допомогою кисню, називається клітинним диханням. Це аеробний процес, оскільки у ньому бере участь кисень. АТФ утворюється у спеціальних клітинних органелах-мітохондріях. У м'язах вони примикають до міофібрил, а також розкидані по саркоплазмі.

       М'язи мають постійно забезпечуватися енергією для продукування сили під час тривалої м'язової діяльності. На відміну від анаеробного утворення АТФ, окиснювальна система продукує значну кількість енергії, тому аеробний метаболізм є основним методом утворення енергії під час м'язової діяльності, що потребує виявлення витривалості. Це ставить підвищені вимоги до системи транспорту кисню до активних м'язів.

Окиснення вуглеводів. Окиснювальне утворення АТФ включає три процеси:

1) гліколіз; 2) цикл Кребса; 3) ланцюжок переносу електронів.

Гліколіз при обміні вуглеводів відіграє важливу роль як в анаеробному, так і в аеробному утворенні АТФ. Причому він перебігає однаково, незалежно від того, чи бере участь у цьому процесі кисень. Участь кисню визначає лише «частку» кінцевого продукту — піровиноградної кислоти. При анаеробному гліколізі утворюється молочна кислота і усього 3 молі АТФ на 1 моль глікогену. За участю кисню піровиноградна кислота перетворюється на сполучення, котре називається ацетилкофермент А (ацетил-КоА).

Цикл Кребса. Після утворення ацетил-КоА попадає у цикл Кребса (цикл лимонної кислоти) — складну послідовність хімічних реакцій, котрі дозволяють завершити окиснення ацетил-КоА. Наприкінці циклу Кребса утворюється 2 молі АТФ, а речовина (сполучення, на котре впливають ферменти, у цьому випадку первісний вуглевод) розщеплюється і, з'єднуючись з киснем, утворює діоксид вуглецю (СО2), котрий легко дифундує з клітин, транспортується кров'ю у легені й виділяється у зовнішнє середовище (відбувається реакція декарбоксилювання К-Н + СО2).

Ланцюжок переносу електронів. Під час гліколізу, коли глюкоза перетворюється на піровиноградну кислоту, виділяється водень. Значно більша кількість водню виділяється під час циклу Кребса. Якщо він залишається у системі, то внутрішня частина клітин стає надто кислою. Що відбувається з цим воднем?

Цикл Кребса пов'язаний із серією реакцій, котрі називаються ланцюжком переносу електронів. Водень, що виділяється під час гліколізу і у циклі Кребса, з'єднується з двома коферментами — нікотин-аденін-динуклеотидом та флавін-аденін-динуклеотидом, котрі переносять атоми водню у ланцюжок переносу електронів, де вони розщеплюються на протони та електрони. Наприкінці ланцюжка Н+ з'єднується, з киснем, утворюючи воду і тим самим запобігаючи підкисленню.

Електрони, що відокремилися від водню, беруть участь у серії реакцій і у кінцевому результаті забезпечують енергію для фосфорилювання АДФ, а отже, утворення АТФ. Оскільки цей процес відбувається за участю кисню, то він називається окиснювальним фосфорилюванням.

Утворення енергії за рахунок вуглеводів. Окиснювальна система утворення енергії забезпечує отримання 39 молекул АТФ з однієї молекули глюкози. Якщо процес починається з глюкози, то утворюється 38 молекул АТФ (згадаймо, що одна молекула АТФ використовується до початку гліколізу для утворення глюкозо-6-фосфату).

Окиснення жирів. Як уже відмічалося, жири також роблять свій внесок в енергетичні потреби м'язів. Запаси глікогену у м'язах та печінці можуть забезпечити усього 1200-2000 ккал енергії, у той час як жири, що містяться всередині м'язових волокон та в жирових клітинах, — близько 70 000-75 000 ккал.

Хоча жирами називають багато хімічних сполук, такі, як тригліцериди, фосфоліпіди та холестерин, тільки тригліцериди використовуються як основні джерела енергії. Тригліцериди знаходяться у жирових клітинах та волокнах скелетних м'язів. Щоб використати тригліцериди для утворення енергії, необхідно розщепити їх на основні складові: одну молекулу гліцерину та три молекули вільних жирних кислот. Цей процес називається ліполізом і здійснюється ферментами — ліпазами.

Вивільнившись з тригліцериду (жиру), вільні жирні кислоти можуть попасти у кров, котра транспортує їх по усьому організму, і у результаті дифузії проникнути у м'язові волокна. Інтенсивність надходження вільних жирних кислот у м'язові волокна залежить від градієнта концентрації. Підвищення концентрації вільних жирних кислот у крові виштовхує їх у м'язові волокна.

Процес β-окиснення. Незважаючи на значні структурні відмінності між різними вільними жирними кислотами, їх метаболізм майже однаковий, як видно. До того, як вони попадуть у м'язові волокна, вільні жирні кислоти активуються енергією АТФ за допомогою ферментів. Таким чином їх готують до катаболізму (розщеплення) у мітохондріях. Цей ферментний катаболізм жирів мітохондріями називається β- окисненням. У цьому процесі вуглецевий ланцюжок вільної жирної кислоти ділиться на двовуглецеві рештки оцтової кислоти. Наприклад, якщо первісно вільна жирна кислота мала 16-вуглецевий ланцюжок, то при β- -окисненні утворюється 8 молекул оцтової кислоти. Вся оцтова кислота потім перетворюється на ацетил-КоА.

Цикл Кребса та ланцюжок переносу електронів. З цього моменту обмін жирів здійснюється за тим же принципом, що й метаболізм вуглеводів. Ацетил-КоА, що утворився внаслідок β- окиснення, вступає у цикл Кребса. У цьому циклі утворюється водень, котрий транспортується у ланцюжок перено­су електронів разом з воднем, утвореним під час β- окиснення, де піддається окиснювальному фосфорилюванню. Як і при обміні глюкози, проміжними продуктами окиснення вільних жирних кислот є АТФ, Н2О, СО2. Однак для повного спалювання молекули вільних жирних кислот потребується більше кисню.

Хоча жири забезпечують більше кілокалорій енергії на грам, ніж вуглеводи, для їх окиснення потребується більше кисню, ніж для окиснення вуглеводів. Жири утворюють 5,6 молекули АТФ відносно молекули О2, вуглеводи — 6,3 молекули АТФ відносно молекули О2. Доставка кисню обмежена кисневотранспортною системою, тому кращим джерелом енергії під час виконання фізичної вправи високої інтенсивності є вуглеводи

Переважний вміст у вільних жирних кислотах більшої кількості вуглецю, ніж у глюкозі, полягає в утворенні більшої кількості ацетил-КоА при метаболізмі даної кількості жиру отже, у цикл Кребса надходить більша кількість ацетил-КоА, а у ланцюжок переносу електронів більше електронів. Саме тому при метаболізмі жирів утворюється набагато більше енергії ніж при метаболізмі вуглеводів.

 В результаті реакцій окиснення, циклу Кребса та ланцюжка переносу електронів з однієї молекули пальмітинової кислоти утворюється 129 молекул АТФ, у той час як з молекули глюкози та глікогену відповідно 38 та 39 молекул. Незважаючи на такий високий показник, тільки близько 40 % енергії, що вивільнюється внаслідок метаболізму молекул або глюкози, або вільних жирних кислот, витрачається на утворення АТФ. Решта 60% виділяються у вигляді тепла.

МЕТАБОЛІЗМ БІЛКІВ

Як уже відмічалося, вуглеводи та жири є переважними джерелами енергії нашого організму. Однак використовуються і білки або, скоріше, амінокислоти, з котрих вони складаються. Деякі амінокислоти можуть перетворюватися на глюкозу (за допомогою глюконеогенезу).

Кількість енергії, утворюваної білками, досить важко визначити, на відміну від енергії, утворюваної вуглеводами або жирами, оскільки білки також містять азот. При катаболізмі амінокислот певна кількість азоту використовується для утворення нових амінокислот, решта азоту перетворюється на сечовину і виділяється головним чином з сечею. Цей процес потребує використання АТФ і, отже, призводить до витрат якоїсь кількості енергії.



Поделиться:


Читайте также:




Последнее изменение этой страницы: 2021-12-15; просмотров: 51; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.144.84.175 (0.041 с.)