Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Индуктивные и традуктивные умозаключенияСодержание книги
Поиск на нашем сайте
ИНДУКЦИЯ, ЕЕ СТРУКТУРНЫЕ ОСОБЕННОСТИ, ВИДЫ
Индуктивное умозаключение — это мыслительная структура (форма мысли), вид умозаключения, в котором общий вывод следует из двух и более частных или единичных посылок. Если дедукция предполагает знание какого-то закона, общего положения (топоса, по Аристотелю) и дедуктивное рассуждение в таком случае — конкретизация этого общего положения, то индукция — наоборот, поиск общего через рассмотрение ряда единичных или частных положении. Это способ практического, опытного овладения, освоения окружающего предметного мира, это переход от знания меньшей степени общности к знанию большей степени общности. Короче - это противоположная дедукции направленность рассуждения, соответственно и структура мысли. В виде схемы структура индуктивного умозаключения имеет такой вид: S1 есть Р S2 есть Р S3 есть Р S1, S2, S3 составляют часть предметной области S Все S есть P В отличие от дедуктивных категорических умозаключений, где связь крайних терминов устанавливается через их отношение к среднему, т.е. в посылках эта связь не дана непосредственно; в индуктивных умозаключениях связь, устанавливаемая в выводе, дана непосредственно в самих посылках. Другой особенностью индуктивных умозаключений является то, чти они никогда (за единственным исключением) не дают абсолютно достоверного знания. Индуктивные умозаключения по существу своему всегда дают знание проблематичное, вероятное, правдоподобное. Единственным исключением является умозаключение по так называемой полной индукции. Но поскольку полная индукция применима в ограниченных случаях и не соответствует природе индукции - давать более общее, чем исходное, т.е. новое знание, поэтому научная ценность и значимость полной индукции незначительна. Научная же ценность и значимость индукции заключается как раз в том, что она расширяет наше знание, распространяет знание, полученное из ограниченных предметных областей, на более широкую предметную область, на область неизвестного. В практике научного и обыденного познания, в практике научного исследования мы постоянно пользуемся индукцией для достижения ценных и в общем-то правильных научных положений. Вывод, например, закона всемирного тяготения на основании только части исследованных свойств предметов наблюдаемого мира не теряет своей научной ценности и значимости относительно всего (и не наблюдаемого в том числе) мира. В индукции, как и в дедуктивных умозаключениях, выделяют посылки и заключение (вывод), но посылки не подразделяются на меньшую и большую (все посылки индуктивных рассуждений равнозначны), а могут быть подразделены на первую, вторую и т. д. Количество посылок не ограничивается, хотя ясно, что их число не должно превышать число самих предметов, элементов, составных частей какого-то объема (какой-то предметной области), относительно которого идет рассуждение. Различают два основных вида индукции: полную и неполную. Полная индукция — это умозаключение, в котором общий вывод получен на основании единичных посылок о каждом предмете (каждом элементе) какого-то множества (класса, области, объема и пр.). Поскольку речь идет о каждом элементе множества, то понятно, что полной индукцией можно пользоваться только относительно поддающихся исчислению предметных областей (множеств, классов, объемов и пр.). Например: В понедельник было пасмурно Во вторник было пасмурно В среду было пасмурно В четверг было пасмурно В пятницу было пасмурно В субботу было пасмурно В воскресенье было пасмурно Всю неделю было пасмурно. Несмотря на абсолютную достоверность, вывод по полной индукции в научном отношении мало популярен, наименее ценен и прежде всего потому, что этот вид имеет ограниченное употребление (ведь надо обязательно перечислить все предметы), он не дает ничего нового, не распространяет знание на более широкую предметную область, на неизвестное, т.е. не соответствует существу индукции, ее природе; общий вывод в этом случае — лишь более короткая формулировка знания, данного в посылках, их сумма. На этом основании некоторыми специалистами в логике данный вид и не включается в индукцию. Неполная индукция - это и есть собственно индукция; по природе своей, по существу это умозаключение, в котором общий вывод делается на основании посылок, лишь частично охватывающих ту или иную, исследуемую или рассматриваемую, предметную область. Неполная индукция подразделяется на три вида: индукция через простое перечисление при отсутствии противоречащего случая; индукция через отбор фактов, исключающих случайность обобщения, и научная индукция. Индукция через простое перечисление при отсутствии противоречащего случая, по другому называемая еще популярной индукцией, есть общий вывод на основании лишь того, что из всех первых, даже случайно попавшихся случаев (фактов), не встретилось ни одного, противоречащего обобщению. Примером этого вида индукции является случай с незадачливым путешественником, который, едва высадившись на берег Франции, встретил нескольких, случайно оказавшихся рыжими, французов и записал в своем дневнике: "Все французы — рыжие". Или другой пример: аспирант пришел помочь своему научному руководителю принять экзамен у студентов, и, явно желая польстить ему, после первых же успешных ответов экзаменующихся, сказал профессору: "Ваши студенты очень хорошо подготовились к экзамену". Степень достоверности (вероятности) вывода по индукции через простое перечисление существенно зависит от количества рассматриваемых случаев: чем больше их число, тем выше достоверность вывода. Индукция через отбор фактов, исключающих случайность обобщения, отличается от популярной индукции упорядоченностью отбора случаев-фактов. Она рассматривает не первые попавшиеся, а систематизированно подобранные, подобранные определенным образом, запланированные случаи, чем и повышает степень достоверности своего вывода. Так, чтобы судить о качестве выпускаемой продукции молочного завода, консервной фабрики или папиросного цеха, не вскрывая каждую бутылку, консервную байку, не выкуривая каждую сигарету, следует по определенной системе, по определенному плану выбрать десятую (сотую или иную) единицу продукции и на основании их качественности сделать общий вывод о качестве всей продукции. Здесь также, как и в популярной индукции, чем больше будет рассмотрено случаев, тем выше станет и степень достоверности вывода. Строго говоря, этому виду индукции соответствуют и все виды социологических исследований, статистические обобщения. Научная индукция достойна особого выделения и рассмотрения, потому что она не просто обобщение, она - особый вид умозаключения о причине.
МЕТОДЫ НАУЧНОЙ ИНДУКЦИИ Научная индукция - это умозаключение о причине наблюдаемого явления на основании сопоставления нескольких случаев. Своим названием этот вид индукции подчеркивает, что вывод здесь опирается на более существенные, чем в других видах индукции, часто и необходимые, опытно фиксируемые, наблюдаемые признаки, сопутствующие тем или иным предметам (явлениям, процессам), свойствам их и пр. Учитывая сущность, природу фактов (случаев), научная индукция дает наиболее достоверное из индуктивных выводное знание. Разработкой научной индукции много занимался Ф. Бэкон, а также некоторые его последователи, в особенности Дж.С. Милль, поэтому научную индукцию иногда называют индукцией Бэкона-Милля. Структурно различают четыре вида научной индукции, традиционно называемых в логике методами: метод единственного сходства, метод единственного различия, метод сопутствующих изменений и метод остатков. В качестве пятого выделяют соединенный метод сходства и различия. Метод единственного сходства, или просто метод сходства, — это умозаключение о причине наблюдаемого явления, основанное на сравнении нескольких случаев, влекущих за собой это явление. Если два или более случая исследуемого (наблюдаемого) явления имеют только одно (из нескольких) общее, предшествующее явлению обстоятельство, то оно и есть причина или часть причины исследуемого (наблюдаемого) явления. Схематически структура данного метода может быть выражена следующим образом: 1-й случай: БВГ — обстоятельства, предшествующие явлению "в" 2-й случай: ДЕВ — обстоятельства, предшествующие явлению "в" 3-й случай: ВЗИ — обстоятельства, предшествующие явлению "в" 4-й случай: КЛВ — обстоятельства, предшествующие явлению "в" Сл.: "В" является причиной или частью причины явления "в". Анализ набора обстоятельств, предшествующих явлению "в", показывает, что при любых изменениях обстоятельств, за исключением одного обстоятельства "В", интересующее нас (наблюдаемое) явление "в" все время присутствует. Значит, изменяющиеся обстоятельства не оказывают влияния на наблюдаемое явление, и вывод о том, что причинным обстоятельством явления "в" служит обстоятельство "В", будет вполне обоснованным. С подобными ситуациями мы сталкиваемся довольно часто. Например, мы хотим установить причину радужной окраски внутренней поверхности речной раковины. Для этого мы сравниваем несколько случаев с определенным набором исходных обстоятельств: 1-й случай включает в себя такие естественные "обстоятельства" раковины, как вес, форма, химический состав и строение внутренней ее поверхности. 2-й случай связан с восковым отпечатком внутренней поверхности раковины. Он включает в себя несколько иные "обстоятельства", т.е. другой вес, химический состав материала, другую несколько форму, и пр., кроме структуры внутренней поверхности этой раковины, которая восковым отпечатком дублируется. При этом, оказывается, отпечаток все равно имеет радужную окраску. 3-й, 4-й и другие случаи могут включать в себя "обстоятельства", связанные с отпечатком внутренней поверхности раковины смолой, гипсом и другими материалами, также отличных от первого и остальных случаев, и также имеющих с ними одно общее обстоятельство — строение внутренней поверхности раковины. Если при изменении прочих обстоятельств радужная окраска, как показывает опыт, сохраняется во всех оттисках раковины, то определенно, что именно строение внутренней поверхности и является тому причиной. Вывод этот на основании сопоставления всех перечисленных случаев является вполне обоснованным, достоверным. Этим видом индукции часто пользуются в юридической практике, например, в следственной работе. Если при анализе нескольких преступлений (явлений) обнаруживается, что всем им свойственны, сопутствуют им определенные одинаковые обстоятельства, то на этом основании вполне правомерно говорить о "почерке" преступника или преступной группы и можно высказывать заключение о совершении данных преступлений одним человеком (или преступной группой). Степень достоверности вывода по методу сходства может быть увеличена (усилена) за счет увеличения числа рассматриваемых случаев, числа учитываемых исходных обстоятельств, строгости разделения их, глубины и тщательности исследования каждого обстоятельства в отдельности, четкости выделения сходного обстоятельства. Метод единственного различия, или просто метод различия, — это умозаключение о причине наблюдаемого явления, основанное на сравнении всего лишь двух случаев: когда интересующее нас явление имеет место и когда его нет. Если случай, в котором явление присутствует, отличается от случая, в котором его нет, только одним предшествующим явлению обстоятельством, то именно это обстоятельство и является причиной или частью причины данного явления. Это определение почти наглядно иллюстрируется следующей схемой метода: 1-й случай: ВСД — обстоятельства, повлекшие явление "в" 2-й случай: СД — обстоятельства, не повлекшие явление, т.е. "--" Сл.: "В" — причина или часть причины явления "в". Особенность этого метода, соответствующая его природе и отражающая его экспериментальный, задаваемый человеком произвольный характер, - это необходимость только двух случаев. Такая, образно говоря, уплотненность метода, экономичность его, конечно же, подчеркивает его научную, экспериментальную оптимальность. Например, сравнивая всего два случая: будильник, звенящий под стеклянным колоколом, и этот же уже беззвучно (мы видим, что молоточек стучит по колокольчику будильника) звенящий под этим же колоколом будильник, но с выкачанным из-под него воздухом, — мы правильно заключаем, что воздушная среда есть причина распространения звуковых колебаний на расстояние. Эти два случая сходны во всех обстоятельствах, кроме одного, и именно это обстоятельство повлекло за собой исчезновение звука звенящего будильника. Значит, оно и есть причина данного явления. Соединенный метод сходства и различия не всегда рассматривается как особый, самостоятельный, и это понятно — он представляет собой соединение двух предшествующих, уже известных методов. Его достоинство заключается в том, что он как бы усиливает, увеличивает степень достоверности каждого метода в отдельности и дает более высокий по надежности вывода. Структурно он представляет собой сравнение не всего лишь двух случаев, а двух рядов случаев, различающихся тем, что в первом ряду случаев наблюдается явление, а во втором - оно отсутствует. Этим данный метод соответствует методу различия. Первый ряд случаев построен по методу сходства, это ряд случаев, когда исследуемое явление наблюдается при одном общем для всех случаев обстоятельстве. Второй ряд случаев представлен тем же набором обстоятельств, но без общего для первого ряда обстоятельства, и в этом ряду явление не наблюдается. На схеме это очевиднее: 1-й ряд случаев: 2-й ряд случаев: БВГ — влечет явление "в" БГ -- явления нет, т.е. " -- " ВДЕ — тоже влечет "в" ДЕ -- явления нет, т.е. " -- " ЗИВ — тоже влечет “ "в" ЗИ -- явления нет, т.е. " -- " КВЛ — тоже влечет "в" КЛ -- явления нет, т.е. " -- " Сл.: "В" является причиной явления "в". Метод сопутствующих изменений - тоже умозаключение о причине и формулируется так: если изменение того или иного из предшествующих явлению обстоятельств всякий раз вызывает соответствующее изменение самого явления, то именно это обстоятельство и является причиной (или частью причины) данного явления. Структура метода такова: БВГД — обстоятельства, повлекшие явление "в" БВ1ГД — обстоятельства, повлекшие явление "в1" БВ2ГД — обстоятельства, повлекшие явление "в2" Сл.: "В" является причиной явления "в". Так, изменяя только длину струны, при неизменности других исходных обстоятельств: материала струны, сечения ее, силы натяжения и пр., мы замечаем сопутствующее удлинению изменение тона звучания струны. Из этого мы делаем вывод, что длина струны — причина изменения высоты тона ее звучания. Метод остатков — это вывод о причине явления на основании отбора известных обстоятельств, вызывающих уже известные определенные явления, и, таким образом, выделения в остатке того обстоятельства, которое и есть причина (или часть ее) интересующего нас явления. Этот метод используется, когда уже с помощью других методов установлены многие причинно-следственные связи, т.е. он применим на основе знания предшествующих методов, на основе использования их, ибо только с помощью этих методов мы можем накапливать сведения о явлениях и об их причинах. Так, наблюдая сложное явление "бсде", которому предшествует не менее сложный набор обстоятельств, мы устанавливаем, что явление "б" вызвано обстоятельством "Б", явление "с" — обстоятельством "С", явление "д" — обстоятельством "Д". И только оставшемуся явлению "е" нет соответствующего и известного нам обстоятельства. Но поскольку мы знаем, что в природе нет беспричинных явлений, тем более, что все остальные явления причинно обусловлены, из этого мы заключаем, что причиной явления "е" может быть лишь некое обстоятельство "Е", которое на данный момент может быть нам и не известно. Схематически метод остатков может быть представлен в следующем виде: "бсде" - сложное явление, которому предшествуют обстоятельства ВСД Из опыта известно, что явление "б" - причинно обусловлено обстоятельством Б, явление "с" - причинно обусловлено обстоятельством С, явление "д" - причинно обусловлено обстоятельством Д Вероятно, явление "е" причинно обусловлено неким обстоятельством Е. В такой записи метода как бы более явно подчеркивается остаточный характер вывода о причине, но этот же метод может быть представлен и более традиционно: БСД — обстоятельства, предшествующие сложному явлению "бсде" В — обстоятельство, обуславливающее явление "б" С -- обстоятельство, обуславливающее явление "с" Д -- обстоятельство, обуславливающее явление "д" Вероятно, "Е" есть обстоятельство, вызывающее явление "е" Соответствующих этому методу исторических примеров много. Так, известно, что в 1868 г. французский и английский астрономы Ж. Жансен и Н. Локьер обнаружили в солнечном спектре линию ярко-желтого цвета. Ее нельзя было приписать ни одному из известных тогда на Земле химическому элементу, спектральные линии которых уже были известны. Оставалось предположить, что данную ярко-желтую линию вызывает неизвестный пока элемент. Его назвали гелием, т.е. солнечным, полагая, что, возможно, этот элемент только на Солнце и присутствует. Правда, впоследствии он был обнаружен и на Земле. Другой пример тоже хорошо известен. Из наблюдений за движением планеты Уран было обнаружено, что оно не соответствует математически вычисленной для этой планеты орбите, учитывающей влияние всех известных тогда планет Солнечной системы, т.е. уже известным обстоятельствам. Этому наблюдаемому явлению было дано соответствующее объяснение: значит на движение планеты Уран оказывает возмущающее влияние нечто, место положения которого, учитывая силу возмущения, математическими расчетами определил в 1846 г. французский астроном У.Ж.Ж. Леверье (впоследствии - иностранный член-корреспондент Петербургской Академии наук). В том же году немецкий астроном И.Г. Галле с помощью телескопа, направленного в указанное место, обнаружил новую планету, названную потом Нептун. Метод остатков, таким образом, может выполнять прогностическую роль, роль метода, опережающего непосредственное, опытное познание. Наглядная схема видов индукции:
Виды индукции
неполная индукция полная
популярная системная (через простое перечисление) (через отбор фактов)
научная
метод метод метод метод сходства различия остатков сопутствующих изменений соединенный метод сходства и различия
ТРАДУКТИВНЫЕ УМОЗАКЛЮЧЕНИЯ
Традуктивные умозаключения — это рассуждения, в которых посылки и заключение являются суждениями одинаковой степени общности. Если дедукция — движение мысли от общего к частному (или единичному) случаю, конкретизация общего положения (закона) к отдельному или нескольким случаям, а индукция — движение мысли от единичного или частного к общему, суммирующему все эти случаи, то традукция — это движение мысли от общего к общему, от частного к частному, от единичного к единичному. Традуктивными умозаключениями являются умозаключения отношения и умозаключения по аналогии: Пять больше трех Три больше двух Пять больше двух Москва севернее Воронежа Воронеж севернее Новочеркасска Москва севернее Новочеркасска В обладает признаками абсд С обладает признаками абс С обладает и признаком д Умозаключения по традукции основываются на двух общих, присущих миру отношений между предметами, явлениями, процессами, свойствах: на тождестве и на сходстве. Эти свойства закреплены в известных аксиомах математики и формальной логики (особенно современной), и в одинаковой степени относятся к рассуждениям о соразмерности по величине, о соразмерности в пространстве, во времени и пр. Это такие свойства как рефлексивность, симметричность, ассимметричность, транзитивность, коммутативность и пр. Социальные, нравственные отношения, чувства — довольно специфичный вид отношений и требуют особого подхода, они не всегда подпадают под особенности названных видов отношений. Использование традукции требует особого внимания в том случае, когда мы имеем дело с одним и тем же предметом, но по-разному называемому, или в разное время, в разные периоды его существования рассматриваемому. Для предотвращения ошибочных традуктивных заключений в таких случаях, надо тщательно исследовать признаки предмета и отличать те, которые отражают его природу (сущность), от тех, которые вызваны условиями времени и обстоятельств места, в котором оказался данный предмет, т.е. нужно быть хорошим специалистом в той предметной области, относительно которой умозаключают по традукции. В структурном отношении традуктивные умозаключения также, как и дедуктивные, состоят из двух посылок и вывода. В посылках легко обнаружить элемент, выполняющий роль среднего термина, и два крайних термина, т.е. и этот вид умозаключений состоит из трех элементов. Правда, назвать их субъектом или предикатом вывода невозможно, поэтому будем называть их левым или правым членом отношения, само же отношение, напоминаю, выразимо знаком R. Закономерности отношений уже были названы - это симметричность отношений, ассимметричность, рефлексивность, антирефлексивность, транзитивность, коммутативность и пр. Различают несколько видов традуктивных умозаключений, определяемых особенностями их структуры: умозаключения простого отношения, умозаключения степени отношения и умозаключения условной зависимости. Умозаключения простого отношения, в том числе и равенства, — это умозаключения с использованием логических операторов "больше", "меньше", "равно", "правее", "левее", "раньше", "позже" и т.п. Иван брат Николая Николай брат Петра Иван брат Петра. Умозаключения степени отношения, а они были известны еще стоикам III—II вв. до н. э., используют такие операторы, как "вдвое", "второе" и т.д. больше, "вдвое", "втрое" и т.д. меньше" и пр., и им свойственно умножение степеней в заключении. Например: В вдвое старше С Дед вдвое старше своего сына С втрое старше Д Сын втрое сташе своего сына, т.е. внука В вшестеро старше Д. Дед вшестеро старше внука. Умозаключениями условной зависимости являются, например, такие: Если х, то у но х= z, а у= q Сл.: Если z, то q. В аналогии вывод о сходстве предметов в одних признаках основывается на сходстве их в других признаках. Понятно, чти основа для такого вывода довольно шаткая, поскольку речь идет не об абсолютном тождестве и даже не об относительном, а всего лишь о сходстве, и всего лишь в нескольких признаках. Поэтому степень достоверности вывода по аналогии существенно зависит от числа сходных признаков — чем их больше, тем достовернее будет вывод; от существенности этих признаков и степени, силе связи их между собой — чем существеннее будут сходные признаки и чем теснее будет связь между ними, тем достовернее будет вывод по аналогии. Поскольку аналогия, как и индуктивные умозаключения, дает вероятностное знание, то это служит для некоторых основанием рассматривать ее в качестве одного из видов индукции, хотя своеобразие структуры аналогии и ее отличие от индуктивных методов легко просматриваются в следующей схеме: Предмет Б обладает признаками абсд Предмет В обладает признаками абс Предмет В обладает и признаком д. С другой стороны, столь же неосновательны и предложения рассматривать аналогию как своеобразный вид доказательства. В доказательстве на основе аналогичных случаев рассуждение примерно такое: два предмета (признака, свойства, явления) сопутствуют друг другу во всех предшествующих случаях, поэтому они будут вместе и сейчас. По аналогии же рассуждение несколько иное: два предмета (явления) сходны друг с другом в нескольких известных признаках, следовательно, эти предметы (явления) сходны будут и в признаке, который, известно, присущ только одному из них. Например: Планета Земля имеет шарообразную форму, вращается вокруг своей оси, вокруг Солнца, имеет кислород в своей атмосфере, имеет влагу, смену времен года, и на Земле есть разумная жизнь Планета Марс тоже имеет шарообразную форму, вращается вокруг своей оси, вокруг Солнца, имеет кислород в своей атмосфере, имеет влагу, смену времен года Сл.: На Марсе есть разумная жизнь. Различают аналогию предметов, или признаков, и аналогию отношений. Пример о Марсе - аналогия предметов, такой же аналогией будет и несколько иное по направлению рассуждение, т.е. когда, зная об известном артисте, что он высокий, стройный, красивый, средних лет брюнет, заключаем по аналогии и о встреченном на улице высоком, стройном, красивом, средних лет брюнете, что он тоже артист: Высокий, стройный, красивый, средних лет брюнет - известный артист Данный (встречный) высокий, стройный, красивый, средних лет брюнет Наверное, он тоже артист. Аналогия отношений имеет место тогда, когда мы сопоставляем несколько отношений, чем-то сходных друг с другом. Например, раньше часто говорили, что арифметика так же относится к высшей математике, как формальная логика к диалектической. 2+3 находятся в таком же отношении к 3+2, как 2 x 3 к 3 x 2; или: 6 так же относится к 9, как 10 к 15.
Глава 6 ФОРМЫ НАУЧНОГО МЫШЛЕНИЯ
К научным формам мысли правомерно отнести проблему (вопрос), доказательство (опровержение), гипотезу и теорию, поскольку эти формы мысли и стимулируют научные исследования, и способствуют обоснованию получаемых ими результатов, и свидетельствуют о довольно сложном характере данных форм мысли, и, кроме того, являются формами опережающего познания. Конечно, к научным формам мысли следует отнести и принцип, закон, категорию и некоторые другие, но поскольку они по структуре своей могут соответствовать в одних случаях понятиям, в других случаях - суждениям, то они как бы и не требуют особого рассмотрения с формально-логической позиции, ибо эти формы мысли уже исследованы. Но если к ним подходить с содержательной их стороны, то такой подход будет выходить за рамки предмета и задач формальной логики, и поэтому данные формы мысли, скорее, - предмет исследования теории познания (гносеологии), чем логики.
ПРОБЛЕМА (ВОПРОС)
Проблема — форма мысли, отражающая и выражающая в виде вопроса (задачи, задания, системы их) наше знание о неизвестном (наше знание о незнании), и своей постановкой требующая теоретического или практического преодоления этой неизвестности, т.е. разрешения проблемы. Проблема, таким образом, и форма мысли, и форма организации исследования чего бы то ни было; она носит стимулирующий научное исследование, а в целом и любой человеческий труд, характер. Проблема — это вопрос, ответ на который не всегда содержится в накопленном знании и требует дополнительных теоретико-практических, т.е. физических или интеллектуальных, а то и тех и других одновременно, усилий, исследований. Она всегда связана с некоторой практической или теоретической трудностью, требующей физических, интеллектуальных усилий, преодоления неопределенности, результатом которой и выступает решение проблемы. Можно говорить о проблеме для себя, для отдельного человека (группы людей), и можно выделять проблемы для человечества, для общества в целом. Если решения первых проблем обычно уже содержится в накопленном знании и требуются лишь дополнительные, как правило, индивидуальные усилия для нахождения соответствующих связей между знаниями и проблемой (задачей, заданием и пр.), то вторые - более существенны, важны и ответ на них обычно не содержится в наличном знании (базисе), а требует дополнительного поиска таких знаний, дополнительного исследования и соответствующих усилий. Проблема возникает обычно, когда встречается какое-то затруднение, когда что-то неясно, и эту неясность необходимо снять, устранить. Если неясность не имеет четкой формулировки, то эта неопределенность выступает как предпроблемная ситуация, как неопределенное затруднение. Со временем, конечно, эта неопределенность снимается, проблема формулируется четко и ясно. Структурно вопрос и проблема состоят из одинаковых элементов. Вопрос, зачастую, — это форма выражения проблемы, а проблема — такой вопрос, ответ на который временно или принципиально затруднен. Вопрос — форма мысли, отражающая недостаточность исходной информации и структурными составляющими своими ориентирующая человека на ее преодоление. В языковой оболочке вопрос как форма мысли выражается вопросительным предложением. В структуре проблемы и вопроса обычно выделяют базис (основу), т.е. исходную информацию, затруднение и ориентацию. Базис (основа), или предпосылка вопроса, — это то накопленное знание, та исходная информация, в которой и обнаруживается некое непреодолимое содержанием базиса затруднение, указывающее, что базис недостаточен, что его необходимо для преодоления затруднения расширить, углубить, дополнить. Неполнота и необходимость преодоления недостаточности исходной информации в вопросе выделяются такими операторами, как "кто", "что", "когда", "почему", "как" и пр. Эти же операторы выступают и ориентирующими элементами. По разным основаниям выделяют довольно много видов, или типов вопросов: простые вопросы и сложные, полные и неполные, осмысленные и неосмысленные, содержательные и несодержательные, определенные и неопределенные, правильно поставленные (корректные) и неправильно поставленные (некорректные, каверзные), "к-вопросы" и "ли-вопросы" и т.п. Поскольку еще нет общепринятой классификации вопросов, скажем только о наиболее распространенных их типах. Восполняющие, или "к-вопросы" — это вопросы с операторами, "как", "кто", "когда", "где", "что" и пр. Среди них различают простые вопросы — с одним из этих операторов, и сложные — состоящие из нескольких простых операторов, например: "Кто, где, когда и как.?". Сложные "к-вопросы" всегда можно разбить на несколько простых. Содержанием своим "к-вопросы" направлены на поиски недостающего знания, и в ответ они требуют точной и исчерпывающей информации. Уточняющие же вопросы, или "ли-вопросы", требуют ответов лаконичных, однозначных - "да" или "нет". Они, в свою очередь, делятся на простые безусловные с оператором "верно ли, что", и простые условные с операторами "верно ли, что если, то", а также на сложные конъюнктивные, сложные дизъюнктивные, сложные импликативные вопросы. Понятно, что последние состоят из конъюнктивно, дизъюнктивно и импликативно связанных между собой простых "ли-вопросов", составляющих сложные. Логически корректными, правильно поставленными будут те вопросы, базисы которых (предпосылки) — истинные суждения, например: "Как дойти до Киева?". Некорректными, неправильно поставленными, а то и каверзными будут те вопросы, базисы которых (предпосылки) ложны или неопределенны, например: "Кто отец Кащея Бессмертного?", "Как пройти туда, не знаю куда?", "Как найти то, не знаю что?", "Где в Африке находится город Курск?" и т.п. Полным считается тот вопрос, который содержит в себе и информацию о той области, где следует искать неизвестное, например: "В какой части Европы находится государство Люксембург?". Для правильной постановки вопроса следует выполнять такие логические нормы: 1. Вопрос должен быть корректно поставлен. Каверзные, провокационные и неопределенные вопросы недопустимы. 2. Вопрос должен быть простым, т.е. кратким, ясным, четким. Длинные, запутанные вопросы затрудняют их понимание, усложняют ответ на них, а порой и лишают возможности дать правильный ответ. Сложные вопросы лучше разбивать на несколько простых. 3. В сложных разделительных вопросах необходимо перечислять все члены деления (альтернативы). 4. Наконец, последнее, поскольку вопрос не есть суждение, то не следует приписывать ему истинностные характеристики суждения. Так как вопрос зачастую выступает формой выражения проблемы, то эти правила можно рассматривать и как правила проблемы. Вопрос, как и проблема, раскрывает свою сущность лишь в единстве (в связи, сопоставлении) с ответом, с решением. Ответ должен быть четким, ясным, определенным, информативным, непротиворечивым, нетавтологичным; он должен снимать или, по крайней мере, уменьшать неопределенность вопроса. Ответы могут быть прямыми или косвенными, полными, исчерпывающими или частичными, допустимыми или недопустимыми, правильными или неправильными и пр. Допустимыми могут быть прямые, полные, частичные ответы. Недопустимыми — те, которые не согласуются с основой вопроса, с базисом, или нарушают правила. Вопиющим примером недопустимого (по логике) вопроса, т.е. вопроса, формулировкой своей нарушающего логические нормы, является вопрос Всесоюзного референдума 17 марта 1991 г.: "Считаете ли вы необходимым сохранение Союза Советских Социалистических Республик как обновленной федерации равноправных суверенных республик, в которых в полной мере гарантированы права и свободы человека любой национальности?", с которым основная масса нашего народа связывала в то время возможность оказать влияние на наметившуюся тенденцию "разбегания" республик. Однако, результат референдума был предопределен. С логической точки зрения вопрос сложен, и в силу этого ответ на него затруднен. Правильнее было бы, тем более для референдума, формулировать его в простом виде. В такой же формулировке он представляет собой совокупность нескольких, конъюнктивно связанных друг с другом вопросов. Конъюнкция, как известно, бывает правильной (дающей истинное сложное образование) только в одном случае, когда все входящие в него элементы обладают одной и той же значимостью. В данном же случае, как показал в результате своего логического анализа этого вопроса кандидат технических наук Юрий Грязнов в статье газеты "Смена" от 13 марта 1991 г. - на девять "да" всегда найдется одно "нет". Он разбил этот сложный вопрос на 9 простых и показал, что практически невозможно на все дать, как того требует референдум, одинаковый ответ. А раз так, то референдум теряет свое значение. "Например, - пишет Ю.Грязнов, - требование, чтобы все республики были советскими означает, что не допускается возможность, чтобы хоть одна из республик выбрала для себя иной способ народовластия, скажем, президентское правление или парламентскую республику. Далее, утверждение, что Союз должен быть сохранен, означает, по существу, что выход какой-либо республики из Союза исключается. Таким образом, этот вопрос фактически выносит на референдум статью Конституции о праве республик на выход из Союза. Наконец, необходимо заметить, что суверенные республики могут образовывать конфедерацию, но не федерацию, а образование федерации исключает суверенность республик, так что высказывания. являются несовместимыми, и давая ответ "да" на одно из них, вы обязаны дать ответ "нет" на второе.". С нарушителями своих законов природа беспощадна: нарушивший - да умрет! Нарушителям законов логики такая опасность не грозит, однако, чтобы достичь оптимально-эффективного результата
|
||||
Последнее изменение этой страницы: 2016-04-08; просмотров: 1486; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 52.14.75.147 (0.013 с.) |