Зависимость диэлектрической проницаемости от температуры, давления, влажности, напряжения 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Зависимость диэлектрической проницаемости от температуры, давления, влажности, напряжения



Характер температурной зависимости ε-диэлектриков с различными видами поляризаций часто определяют с помощью температурного коэффициента диэлектрической проницаемости

ТКε=1/ε·(dε/dТ). (3.1.14)

Влияние давления на ε учитывается барическим коэффициентом ε

БКε=1/ε·(dε/dР). (3.1.15)

Для линейных диэлектриков БКε, как правило, положителен, так как при всестороннем сжатии диэлектрика увеличивается число способных поляризоваться молекул в единице объема. В некоторых полярных жидкостях в зависимости ε от давления наблюдается максимум.

Увлажнение заметно увеличивает ε гигроскопического диэлектрика, что в первую очередь можно объяснить высокими значениями ε воды (Э=81). Вместе с тем при увлажнении уменьшается удельное сопротивление, увеличивается угол диэлектрических потерь и уменьшается электрическая прочность диэлектрика.

Для линейных диэлектриков, используемых главным образом в качестве электрической изоляции и диэлектрика конденсаторов, ε в большинстве случаев может считаться практически не зависящей от напряжения, приложенного к диэлектрику. Сильно выраженная зависимость ε от напряжения характерна для сегнетоэлектриков.

Диэлектрическая проницаемость смесей

На практике часто используются неоднородные композиционные диэлектрики, представляющие собой смеси двух или более различных веществ — компонентов смеси. К таким материалам относятся многие пластические массы, состоящие из связующего и наполнителей, керамические, волокнистые, пропитанные и непропитанные пористые материалы и т. п.

Для расчета эффективной ε* смеси положим, что отдельные компоненты не вступают друг с другом в химические реакции, т.е. смесь чисто физическая. Будем считать, что плоский конденсатор состоит из параллельно или последовательно соединенных однородных диэлектриков, как показано на рис. 3.1.8.

 

 

 

рис. 3.1.8

Обозначая через у1 и у2 доли объемного содержания (объемные концентрации) первого и второго компонента для рассмотренного случая будем иметь для параллельного соединения

ε*=у1· ε12· ε2, (3.1.16)

для последовательного соединения

ε*= ε1·ε2/(у1· ε12· ε2). (3.1.17)

Для расчета ε* статистической смеси (хаотической, неупорядоченной в пространстве) предложено большое число формул, из которых широкое применение имеет формула Лихтенеккера. Эта формула, носящая название логарифмического закона смешения, для смеси двух компонентов имеет вид

lg ε*=у1·1g ε12·1g ε2, (3.1.18)

а для смеси т компонентов

Для вспененных материалов, (пенопластов, пенокерамики и др.), заполненных большим количеством мелких пор, из последней формулы, считая, что для газов ε=1, а плотность равна нулю, получается уравнение

1g ε*=d*/dт·lgεт (3.1.20)

где εт и dт диэлектрическая проницаемость и плотность сплошного, твердого диэлектрика, а ε* и d*— диэлектрическая проницаемость и плотность вспененного материала.

 

 

ЭЛЕКТРОПРОВОДНОСТЬ ДИЭЛЕКТРИКОВ



Поделиться:


Последнее изменение этой страницы: 2021-05-12; просмотров: 205; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.137.188.11 (0.006 с.)