Процессы нагревания и охлаждения воздуха 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Процессы нагревания и охлаждения воздуха



Состав воздуха.

Воздух — естественная смесь газов, главным образом азота и кислорода, составляющая земную атмосферу. Воздух необходим для нормального существования подавляющего числа наземных живых организмов: кислород, содержащийся в воздухе, в процессе дыхания поступает в клетки организма и используется в процессе окисления, в результате которого происходит выделение необходимой для жизни энергии. В промышленности и в быту кислород воздуха используется для сжигания топлива с целью получения тепла и механической энергии в двигателях внутреннего сгорания. Из воздуха методом сжижения получают благородные газы. В соответствии с Федеральным Законом «Об охране атмосферного воздуха» под атмосферным воздухом понимается "жизненно важный компонент окружающей среды, представляющий собой естественную смесь газов атмосферы, находящуюся за пределами жилых, производственных и иных помещений".

Важнейшими факторами, определяющими пригодность для проживания человека, воздушной среды являются химический состав, степень ионизации, относительная влажность, давление, температура и скорость движения. Рассмотрим каждый из этих факторов по-отдельности.

 

Химический состав воздуха

В 1754 году Джозеф Блэк экспериментально доказал, что воздух представляет собой смесь газов, а не однородное вещество.

Нормальный состав воздуха

Вещество Обозначение По объёму, % По массе, %
Азот N 2 78,084 75,50
Кислород O 2 20,9476 23,15
Аргон Ar 0,934 1,292
Углекислый газ CO 2 0,0314 0,046
Неон Ne 0,001818 0,0014
Метан CH 4 0,0002 0,000084
Гелий He 0,000524 0,000073
Криптон Kr 0,000114 0,003
Водород H 2 0,00005 0,00008
Ксенон Xe 0,0000087 0,00004

ТЕМПЕРАТУРНЫЙ РЕЖИМ ВОЗДУХА

Измерение температуры воздуха

На метеорологических станциях термометры устанавливают в особой будке, называемой психрометрической будкой, стенки которой жалюзийные. В такую будку не проникают лучи Солнца, но в то же время воздух имеет свободный доступ в нее.

Термометры устанавливают на штативе так, чтобы резервуары располагались на высоте 2 м от деятельной поверхности.

Срочную температуру воздуха измеряют ртутным психрометрическим термометром ТМ-4, который устанавливают вертикально. При температуре ниже —35°С используют низкоградус­ный спиртовой термометр ТМ-9.

Экстремальные температуры измеряют по максимальному ТМ-1 и минимальному ТМ-2 термометрам, которые укладывают горизонтально.

Для непрерывной записи температуры воздуха служит термограф М-16А, который помещают в жалюзийной будке для самописцев. В зависимости от скорости вращения барабана термографы бывают суточные и недельные.

В посевах и насаждениях температуру воздуха измеряют, не нарушая растительный покров. Для этого используют аспирационный психрометр.

Значение температуры воздуха для сельскохозяйственного

Производства

Значение температуры воздуха для сельского хозяйства общеизвестно. Фотосинтез, дыхание, транспирация, усвоение питательных веществ из почвы и другие физиологические процессы происходят в определенном диапазоне температур. Существуют температурные пределы жизнедеятельности растений — биологический минимум и биологический максимум. Между ними находится зона оптимальных температур, при которых наиболее интенсивно развиваются растения и формируется урожай. Пределы температуры для различных растений неодинаковы и изменяются даже для одного и того же растения в период его вегетации, а также при перемещении растений в другие географические условия. Таким образом, их нельзя считать по­стоянными. Они могут сдвигаться в пределах генетически заложенной нормы реакции в результате приспособления к условиям среды. Самые низкие и самые высокие температуры, которые выдерживает данное растение, называют температурными или летальными границами жизни. В пределах этих границ находятся так называемые латентные границы — скрытые (внешне не проявляющиеся) границы физиологической реакции. После перехода через эти границы активные жизненные процессы обратимо снижаются до минимального значения, и протоплазма клеток впадает в тепловое или холодное оцепенение. При достижении летальной границы возникают, необратимые повреждения и жизнь прекращается.

Температура среды также является одним из основных метеорологических факторов, определяющих возможность возникновения заболевания растений и степень его вредоносности. Влияние этого фактора начинает проявляться уже на первых этапах инфекционного процесса, обусловливая жизнеспособность возбудителя болезни и возможность его сохранения к началу вегетационного периода. Сохранение жизнеспособности возбудителя в значительной мере зависит от формы его существования в течение периода, когда прекращается вегетация растений. Наименее стойкими к воздействию среды в это время оказываются так называемые пропагативные споры. Так, конидии возбудителя мучнистой росы пшеницы способны прорастать в большом диапазоне температур (от 0 до 35 °С), что не позволяет им сохраняться уже при температуре, близкой к 0 °С, а споры милдью виноградной лозы способны сохраняться около 20 сут лишь при температуре ниже 10 °С.

Температура среды регулирует и скорость прорастания спор (рис. 4.8).

Тесно связаны с температурным режимом распространение и вредоносность вредителей сельскохозяйственных растений. Для каждого вида вредных насекомых существуют оптимальные и предельные значения температуры. Так, у саранчи период развития от стадии личинки до взрослого насекомого при температуре 32...39 °С длится 20 сут, при 22...27 °С - около 52 сут. Недостаток тепла задерживает или прекращает развитие насекомых. Например, гусеница лугового мотылька при температуре ниже 17 °С не превращается в куколку, аналогичный эффект наблюдается у личинки жука-казарки при температуре ниже 14 °С.

Температура воздуха определяет также состояние, поведение и продуктивность сельскохозяйственных животных.

Тепло — один из основных экологических факторов жизнедеятельности биоценозов. По­этому учет температурного режима воздуха важен для всех отраслей сельскохозяйственного производства как при выборе проектных решений, например районирование культур и сортов сельскохозяйственных растений и пород животных, так и при выработке плановых: расчеты сроков сева и уборки, числа и сроков обработки посевов гербицидами, поливов и т. д.

Задание.

Состав воздуха.

Воздух — естественная смесь газов, главным образом азота и кислорода, составляющая земную атмосферу. Воздух необходим для нормального существования подавляющего числа наземных живых организмов: кислород, содержащийся в воздухе, в процессе дыхания поступает в клетки организма и используется в процессе окисления, в результате которого происходит выделение необходимой для жизни энергии. В промышленности и в быту кислород воздуха используется для сжигания топлива с целью получения тепла и механической энергии в двигателях внутреннего сгорания. Из воздуха методом сжижения получают благородные газы. В соответствии с Федеральным Законом «Об охране атмосферного воздуха» под атмосферным воздухом понимается "жизненно важный компонент окружающей среды, представляющий собой естественную смесь газов атмосферы, находящуюся за пределами жилых, производственных и иных помещений".

Важнейшими факторами, определяющими пригодность для проживания человека, воздушной среды являются химический состав, степень ионизации, относительная влажность, давление, температура и скорость движения. Рассмотрим каждый из этих факторов по-отдельности.

 

Химический состав воздуха

В 1754 году Джозеф Блэк экспериментально доказал, что воздух представляет собой смесь газов, а не однородное вещество.

Нормальный состав воздуха

Вещество Обозначение По объёму, % По массе, %
Азот N 2 78,084 75,50
Кислород O 2 20,9476 23,15
Аргон Ar 0,934 1,292
Углекислый газ CO 2 0,0314 0,046
Неон Ne 0,001818 0,0014
Метан CH 4 0,0002 0,000084
Гелий He 0,000524 0,000073
Криптон Kr 0,000114 0,003
Водород H 2 0,00005 0,00008
Ксенон Xe 0,0000087 0,00004

ТЕМПЕРАТУРНЫЙ РЕЖИМ ВОЗДУХА

ПРОЦЕССЫ НАГРЕВАНИЯ И ОХЛАЖДЕНИЯ ВОЗДУХА

Тепловым режимом атмосферы называют характер распределения и изменения температуры в атмосфере. Тепловой режим атмосферы определяется главным образом её теплообменом с окружающей средой, т. е. с деятельной поверхностью и космическим пространством. За исключением верхних слоев, атмосфера поглощает солнечную энергию сравнительно слабо. Основной источник нагревания нижних слоев атмосферы — тепло, получаемое ими от деятельной поверхности. В дневные часы, когда приход радиации преобладает над расходом, деятельная поверхность нагревается, становится теплее воздуха, и тепло передается от нее воздуху. Ночью деятельная поверхность теряет тепло излучением и становится холоднее воздуха. В этом случае воздух отдает тепло почве, в результате чего сам он охлаждается. Перенос тепла между деятельной поверхностью и атмосферой, а также в самой атмосфере осуществляется следующими процессами.

Молекулярная теплопроводность. Воздух, непосредственно соприкасающийся с деятельной поверхностью, обменивается с ней теплом посредством молекулярной теплопроводности. Вследствие того что коэффициент молекулярной теплопроводности неподвижного воздуха сравнительно мал, этот вид теплообмена незначителен.

Турбулентная теплопроводность. Она возникает внутри атмосферы вследствие вихревого, хаотического движения воздуха, т. е. турбулентности. Ее условно можно разделить на динамическую и термическую.

Динамическая турбулентность — вихревое хаотическое движение, возникающее в результате появления силы трения как между отдельными слоями перемещающегося воздуха, так и между движущимся воздухом и подстилающей поверхностью.

Термическая турбулентность, или тепловая конвекция — упорядоченный перенос отдельных объемов воздуха в вертикальном направлении, возникающий при неравномерном нагревании различных участков поверхности. Над более прогретыми участками воздух становится теплее а, следовательно, легче окружающего и поднимается вверх. Его место занимает более холодный соседний воздух, который, в свою очередь, нагревается и тоже поднимается.

Радиационная теплопроводность. Определенную роль в передаче тепла от почвы к атмосфере играет излучение деятельной поверхностью длинноволновой радиации, поглощаемой нижними слоями атмосферы. Последние, нагреваясь, таким же способом последовательно передают тепло вышележащим слоям. В период охлаждения поверхности радиационный поток тепла направлен от вышележащих слоев атмосферы вниз. Радиационный поток тепла над сушей проявляется главным образом в ночные часы, когда турбулентность резко ослаблена, а тепловая конвекция отсутствует.

Конденсация (сублимация) водяного пара. При конденсации выделяется тепло, нагревающее воздух, особенно более высокие слои атмосферы, где образуются облака.



Поделиться:


Последнее изменение этой страницы: 2021-04-20; просмотров: 144; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.188.152.162 (0.009 с.)