Семиуровневая модель открытых систем OSI 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Семиуровневая модель открытых систем OSI



В 1978 году Международная организация по стандартизации (International Standards Organization ISO) выпустила набор спецификаций, описывающих архитектуру сети с неоднородными устройствами. В 1984 году ISO выпустила новую версию своей модели, названной эталонной моделью взаимодействия открытых систем (Open system Interconnection reference model, OSI). И с 1984 года эта версия стала международным стандартом.

Сетевая модель OSI (базовая эталонная модель взаимодействия открытых систем, англ. Open Systems Interconnection Basic Reference Model) — абстрактная сетевая модель для коммуникаций и разработки сетевых протоколов. Представляет уровневый подход к сети. Каждый уровень обслуживает свою часть процесса взаимодействия. Благодаря такой структуре совместная работа сетевого оборудования и программного обеспечения становится гораздо проще и прозрачнее.

Модель делит все функции сети на 7 уровней. Каждый уровень имеет заранее заданный набор функций, которые он должен выполнить для проведения связи.

Прикладной уровень

Прикладной уровень (уровень 7) – это самый близкий к пользователю уровень OSI. Он отличается от других уровней тем, что не обеспечивает услуг ни одному из других уровней OSI. Он обеспечивает услугами прикладные процессы, лежащие за пределами масштаба модели OSI. Примерами таких прикладных процессов могут служить процессы передачи речевых сигналов, базы данных, текстовые процессоры и т.д.

Прикладной уровень идентифицирует и устанавливает наличие предполагаемых партнеров для связи, синхронизирует совместно работающие прикладные процессы, а также устанавливает и согласовывает процедуры устранения ошибок и управления целостностью информации. Прикладной уровень также определяет, имеется ли в наличии достаточно ресурсов для предполагаемой связи.

Представительный уровень

Представительный уровень (уровень 6) отвечает за то, чтобы информация, посылаемая из прикладного уровня одной системы, была читаемой для прикладного уровня другой системы. При необходимости представительный уровень осуществляет трансляцию между множеством форматов представления информации путем использования общего формата представления информации.

Представительный уровень занят не только форматом и представлением фактических данных пользователя, но также структурами данных, которые используют программы. Поэтому кроме трансформации формата фактических данных (если она необходима), представительный уровень согласует синтаксис передачи данных для прикладного уровня.

Сеансовый уровень

Сеансовый уровень (уровень 5) устанавливает, управляет и завершает сеансы взаимодействия между прикладными задачами. Сеансы состоят из диалога между двумя или более объектами представления. Сеансовый уровень синхронизирует диалог между объектами представительного уровня и управляет обменом информации между ними.

Кроме того, сеансовый уровень предоставляет средства для отправки информации, класса услуг и уведомления в исключительных ситуациях о проблемах сеансового, представительного и прикладного уровней.

Транспортный уровень

Транспортный уровень (уровень 4) Граница между сеансовым и транспортным уровнями может быть представлена как граница между протоколами высших (прикладных) уровней и протоколами низших уровней. В то время как прикладной, представительный и сеансовый уровни заняты прикладными вопросами, четыре низших уровня решают проблемы транспортировки данных.

Транспортный уровень обеспечивает услуги по транспортировке данных, что избавляет высшие слои от необходимости вникать в ее детали. Функцией транспортного уровня является надежная транспортировка данных через сеть. Предоставляя надежные услуги, транспортный уровень обеспечивает механизмы для установки, поддержания и упорядоченного завершения действия каналов, систем обнаружения и устранения неисправностей транспортировки и управления информационным потоком (с целью предотвращения переполнения системы данными из другой системы).

Сетевой уровень

Сетевой уровень (уровень 3) – это комплексный уровень, который обеспечивает возможность соединения и выбор маршрута между двумя конечными системами.

Поскольку две конечные системы, желающие организовать связь, может разделять значительное географическое расстояние и множество подсетей, сетевой уровень является доменом маршрутизации. Протоколы маршрутизации выбирают оптимальные маршруты через последовательность соединенных между собой подсетей. Традиционные протоколы сетевого уровня передают информацию вдоль этих маршрутов.

Канальный уровень

Канальный уровень (уровень 2) (формально называемый информационно-канальным уровнем) обеспечивает надежный транзит данных через физический канал. Выполняя эту задачу, канальный уровень решает вопросы физической адресации (в противоположность сетевой или логической адресации), топологии сети, линейной дисциплины (каким образом конечной системе использовать сетевой канал), уведомления об ошибках, упорядоченной доставки блоков данных и управления потоком информации.

Физический уровень

Физический уровень (уровень 1) определяет электротехнические, механические, процедурные и функциональные характеристики установления, поддержания и разъединения физического канала между конечными системами. Спецификации физического уровня определяют такие характеристики, как величины напряжений, параметры синхронизации, скорость передачи физической информации, максимальные расстояния передачи информации, физические соединители и другие аналогичные характеристики.

Физической средой в различных телекоммуникационных системах могут быть самые разнообразные средства от простейшей пары проводов до сложной системы передачи синхронной цифровой иерархии. Данный курс лекций посвящен рассмотрению именно физических сред и физического уровня эталонной модели взаимодействия открытых систем.

Стек протоколов TCP/IP

Один из наиболее распространенных наборов сетевых протоколов известен как протокол управления передачи/интернет-протокол (TCP/IP). Все устройства, которые обмениваются данными по Интернету, должны использовать набор протоколов TCP/IP. В частности, все они должны использовать протокол IP из интернет-уровня стека, поскольку он позволяет отправлять и получать данные через Интернет.

Модель TCP/IP в большей степени ориентируется на обеспечение сетевых взаимодействий. Для этой цели она признает важность иерархической структуры функций, и предоставляет проектировщикам протоколов достаточную гибкость в реализации.

Стек протоколов TCP/IP включает в себя четыре уровня:

– прикладной уровень (application layer),

– транспортный уровень (transport layer),

– сетевой уровень (Internet layer),

– канальный уровень (link layer).

Стек является независимым от физической среды передачи данных, благодаря чему, в частности, обеспечивается полностью прозрачное взаимодействие между проводными и беспроводными сетями.

Прикладной уровень

Прикладной уровень является интерфейсом между приложением (участником информационного обмена, источником данных) и средой передачи данных. На прикладном уровне работает большинство сетевых приложений. Эти программы имеют свои собственные протоколы обмена информацией, например, HTTP для WWW, FTP (передача файлов), SMTP (электронная почта), SSH (безопасное соединение с удалённой машиной), DNS (преобразование символьных имён в IP-адреса) и многие другие.

В массе своей эти протоколы привязаны к определённому порту, например, HTTP на TCP-порт 80 или 8080. Эти порты определены Агентством по выделению имен и уникальных параметров протоколов.

Транспортный уровень

Протоколы транспортного уровня могут решать проблему негарантированной доставки сообщений («дошло ли сообщение до адресата?»), а также гарантировать правильную последовательность прихода данных. В стеке TCP/IP транспортные протоколы определяют, для какого именно приложения предназначены эти данные.

Протоколы автоматической маршрутизации, логически представленные на этом уровне:

TCP — «гарантированный» транспортный механизм с предварительным установлением соединения, предоставляющий приложению надёжный поток данных, дающий уверенность в безошибочности получаемых данных, перезапрашивающий данные в случае потери и устраняющий дублирование данных. TCP позволяет регулировать нагрузку на сеть, а также уменьшать время ожидания данных при передаче на большие расстояния. Более того, TCP гарантирует, что полученные данные были отправлены точно в такой же последовательности. В этом его главное отличие от UDP.

UDP — протокол передачи датаграмм без установления соединения. Также его называют протоколом «ненадёжной» передачи, в смысле невозможности удостовериться в доставке сообщения адресату, а также возможного перемешивания пакетов. UDP обычно используется в таких приложениях, как потоковое видео и компьютерные игры, где допускается потеря пакетов, а повторный запрос затруднён или не оправдан, либо в приложениях вида запрос-ответ (например, запросы к DNS), где создание соединения занимает больше ресурсов, чем повторная отправка.

И TCP, и UDP используют для определения протокола верхнего уровня число, называемое портом.

Сетевой уровень

Сетевой уровень изначально разработан для передачи данных из одной сети в другую. С развитием концепции глобальной сети в уровень были внесены дополнительные возможности по передаче из любой сети в любую сеть, независимо от протоколов нижнего уровня, а также возможность запрашивать данные от удалённой стороны.

Пакеты сетевого протокола IP могут содержать код, указывающий, какой именно протокол следующего уровня нужно использовать, чтобы извлечь данные из пакета. Это число — уникальный IP-номер протокола.

Канальный уровень

Канальный уровень описывает, каким образом передаются пакеты данных через физический уровень, включая кодирование (то есть специальные последовательности бит, определяющих начало и конец пакета данных). Ethernet, например, в полях заголовка пакета содержит указание того, какой машине или машинам в сети предназначен этот пакет.

Кроме того, канальный уровень описывает среду передачи данных (будь то коаксиальный кабель, витая пара, оптическое волокно или радиоканал), физические характеристики такой среды и принцип передачи данных (разделение каналов, модуляцию, амплитуду сигналов, частоту сигналов, способ синхронизации передачи, время ожидания ответа и максимальное расстояние).



Поделиться:


Последнее изменение этой страницы: 2021-04-13; просмотров: 73; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.146.255.127 (0.025 с.)