Карнитин-зависимый транспорт жирных кислот в митохондрию 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Карнитин-зависимый транспорт жирных кислот в митохондрию



Карнитин синтезируется в печени и почках и затем транспортируется в остальные органы. Во внутриутробном периоде и в первые годы жизни значение карнитина для организма чрезвычайно велико. Энергообеспечение нервной системы детского организма и, в частности, головного мозга осуществляется за счет двух параллельных процессов: карнитин-зависимого окисления жирных кислот и аэробного окисления глюкозы. Карнитин необходим для роста головного и спинного мозга, для взаимодействия всех отделов нервной системы, ответственных за движение и взаимодействие мышц. Существуют исследования, связывающие с недостатком карнитина детский церебральный паралич и феномен " смерти в колыбели ".

Дети раннего возраста, недоношенные и дети с малой массой особенно чувствительны к недостаточности карнитина. Эндогенные запасы у них быстро истощаются при различных стрессовых ситуациях (инфекционные заболевания, желудочно-кишечные расстройства, нарушения вскармливания). Биосинтез карнитина недостаточен, а поступление с обычными пищевыми продуктами неспособно поддержать достаточный уровень в крови и тканях.

3. После связывания с карнитином жирная кислота переносится через внутреннюю митохондриальную мембрану транслоказой. На внутренней стороне этой мембраны фермент карнитин-ацилтрансфераза II вновь образует ацил-SКоА, который вступает на путь β-окисления.

4. Процесс собственно β-окисления состоит из 4-х реакций, повторяющихся циклически. В них последовательно происходит окисление (ацил-SКоА-дегидрогеназа), гидратирование (еноил-SКоА-гидратаза) и вновь окисление 3-го атома углерода (гидроксиацил-SКоА-дегидрогеназа). В последней, трансферазной, реакции от жирной кислоты отщепляется ацетил-SКоА. К оставшейся (укороченной на два углерода) жирной кислоте присоединяется HS-КоА, и она возвращается к первой реакции. Все повторяется до тех пор, пока в последнем цикле не образуются два ацетил-SКоА.

Последовательность реакций β-окисления жирных кислот

Расчет энергетического баланса β-окисления

Ранее при расчете эффективности окисления коэффициент P/O для НАДH принимался равным 3,0, для ФАДH2 – 2,0.

По современным данным значение коэффициента P/O для НАДH соответствует 2,5, для ФАДH2 – 1,5.

При расчете количества АТФ, образуемого при β-окислении жирных кислот необходимо учитывать:

· количество образуемого ацетил-SКоА – определяется обычным делением числа атомов углерода в жирной кислоте на 2.

· число циклов β-окисления. Число циклов β-окисления легко определить исходя из представления о жирной кислоте как о цепочке двухуглеродных звеньев. Число разрывов между звеньями соответствует числу циклов β-окисления. Эту же величину можно подсчитать по формуле (n/2 -1), где n – число атомов углерода в кислоте.

· число двойных связей в жирной кислоте. В первой реакции β-окисления происходит образование двойной связи при участии ФАД. Если двойная связь в жирной кислоте уже имеется, то необходимость в этой реакции отпадает и ФАДН2 не образуется. Количество недополученных ФАДН2 соответствует числу двойных связей. Остальные реакции цикла идут без изменений.

· количество энергии АТФ, потраченной на активацию (всегда соответствует двум макроэргическим связям).

8. Патологии липидного обмена

Причины, приводящие к нарушениям липидного обмена, можно разделить на две группы.

  • • Первая группа расстройств связана с нарушением процессов переваривания и всасывания липидов в желудочно-кишечном тракте, например недостаточное поступление панкреатической липазы и желчи в кишечник может приводить к этому виду расстройств. Такие заболевания, как хронический панкреатит, опухоль поджелудочной железы, нарушают поступление липазы в кишечник. Недостаток поступления желчи в кишечник имеет место при хроническом холецистите, опухолях и камнях протока желчного пузыря. Нарушения липидного обмена могут быть связаны с заболеваниями желудочно-кишечного тракта (например, при гиповитаминозах, энтеритах), когда процессы всасывания моноацилглицеринов и жирных кислот полностью невозможны из-за повреждения эндотелия кишечника.
  • • Вторая группа расстройств включает нарушения липидного обмена в процессе синтеза и распада липидов в тканях организма человека. Увеличение общих липидов в сыворотке крови носит название гиперлипемии. В норме содержание липидов в плазме крови следующее: общие липиды — 4—8 г/л; триацил- глицеролы — 0,5—2,1 ммоль/л; фосфолипиды общие — 2,0—3,5 ммоль/л; холесте- рол общий — 4,0—10,0 ммоль/л. Часто гиперлипемия является следствием поражения печени, которая играет важную роль в обмене липидов. Нарастание общих липидов в сыворотке крови наблюдается при острых и хронических гепатитах, при механических и паренхиматозных желтухах, при циррозе печени.

Выраженная гиперлипемия развивается при сахарном диабете. Обычно она сопровождается ацидозом. Недостаток инсулина приводит к снижению фосфодиэстеразной активности, что в конечном счете способствует активации липазы и усилению липолиза в жировых депо. Гиперлипемия при сахарном диабете носит «транспортный» характер, так как избыточный распад жиров на периферии приводит к повышенному транспорту жирных кислот в печень, где происходит синтез липидов. Как отмечалось ранее, при сахарном диабете и голодании в печени образуется необычно большое количество кетоновых тел (ацетоуксусная и p-гидроксимасляная кислоты), которые с током крови транспортируются из печени к периферическим тканям. Хотя периферические ткани при диабете и голодании сохраняют способность использовать кетоновые тела в качестве энергетического материала, однако ввиду необычно высокой их концентрации в крови органы не справляются с их окислением и, как следствие, возникает состояние патологического кетоза, т. с. накопление кетоновых тел в организме. Кетоз сопровождается кетонемией и кетонурией — повышением содержания кетоновых тел в крови и выделением их с мочой. Возрастание концентрации триацилглицеролов в плазме крови отмечается также при беременности, нефротическом синдроме, ряде заболеваний печени. Гиперлипемия, как правило, сопровождается увеличением содержания в плазме крови фосфолипидов, изменением соотношения между фосфолипидами и холестеролом, составляющем в норме 1,5:1. Снижение содержания фосфолипидов в плазме крови наблюдается при остром тяжелом гепатите, жировой дистрофии, циррозе печени и некоторых других заболеваниях.

Атеросклероз относится к широко распространенным заболеваниям, которые связывают с развитием в организме гиперлипопротеинемии и сопровождающей се гиперхолестеринемии. Установлено, что при атеросклерозе в плазме крови повышается содержание фракции ЛПНП, а чаше всего и фракции ЛПОНП, которые относят к атерогенным фракциям, в то время как снижается содержание липопротеинов высокой плотности, которые рассматриваются как антиатерогенные.

Как было отмечено, фракция Л ПН П транспортирует холестерол, синтезированный в печени или клетках кишечного эпителия, в периферические ткани, а фракция ЛПВП осуществляет так называемый обратный транспорт, т. е. удаляет из них холестерол. Как известно, атеросклероз характеризуется отложением холестерола в стенках сосудов, на месте которых со временем образуются утолщения — атеросклеротические бляшки, вокруг которых развивается соединительная ткань (склероз), откладываются соли кальция. Сосуды становятся жесткими, теряют эластичность, ухудшается кровоснабжение тканей, а на месте бляшек могут возникать тромбы. Согласно аутоиммунной теории патогенеза атеросклероза (А. Н. Климов с соавторами) ЛПНП и ЛПОНП в кровяном русле подвергаются перекисной модификации, в результате которой модифицированные липопротеины приобретают аутоантигенные свойства, к ним вырабатываются антитела и образуются аутоиммунные комплексы липопротеины — антитела. Эти чужеродные для межклеточного вещества комплексы поглощаются макрофагами и другими фагоцитирующими клетками, откладываются в интиме сосудов и в конечном счете это приводит к образованию атеросклеротической бляшки и всем последствиям атеросклеротического поражения артерий.

Антиатерогенная фракция плазмы крови — ЛПВП способна извлекать холестерол из клеточных мембран и фракции ЛПНП за счет двухстороннего обмена и осуществлять их обратный транспорт — от периферических тканей в печень, где холестерол окисляется в желчные кислоты.

Методы профилактики и лечения атеросклероза. Малохолестериновая диета, разработка лекарственных средств, увеличивающих экскрецию холестерола и ингибирующие его синтез, прямое удаление холестерола из крови методом гемодиффузии и др. Исследованиями последних лет высокий уровень холестерола в крови часто объясняют нарушением биохимических процессов транспорта холестерола внутрь клеток за счет дефектов мембранных рецепторов, связывающих липопротеиновые комплексы. Возможно, в будущем лечение будет направлено на повышение эффективности функционирования дефектных рецепторов или поиски механизмов транспорта холестерола через клеточную мембрану каким-то другим способом.

 

9.Обнаружение глицерина в составе липидов

Акролеиновая проба проводится для обнаружения в липидах глицерина. При нагревании жира с отнимающими воду веществами, такими как KHSO4, NaHSO4, H3BO3, появляются сильно раздражающие едкие пары непредельного акрилового альдегида - акролеина, образующегося из глицерина в связи с отнятием от последнего двух молекул воды.

Материалы, реактивы, оборудование. Масло растительное (или любой жир); воск; фильтровальная бумага; бисульфат калия, безводный; 1% раствор серебра азотнокислого; 5% раствор гидроокиси аммония; раствор фуксинсернистой кислоты.

Ход определения. В пробирку вносят 2-3 капли масла (жира) и прибавляют 100-200 мг безводного кислого сернокислого калия (примерно пятикратное количество или больше). Нагревают пробирку осторожно, но сильно (в вытяжном шкафу!) до появления белых густых паров. Отмечают (осторожно) резкий раздражающий запах акролеина. Если в этот пар внести кусочек фильтровальной бумаги, смоченный аммиачным раствором окиси серебра, то бумага почернеет вследствие выделения металлического серебра. Затем у отверстия пробирки держат фильтровальную бумагу, смоченную раствором фуксинсернистой кислоты. Появляется ярко-розовое пятно. Обе эти акции (с аммиачным раствором окиси серебра и с фуксинсернистой кислотой) являются качественными реакциями на альдегиды, в данном случае — на акролеин.

10. Качественные реакции на стероиды

а. Реакция Гупперт-Сальковского. Метод основан на дегидратации молекулы холестерина под действием концентрированной серной кислоты с образованием холестерилена, имеющего красную окраску

Ход определения. В пробирку наливают 1 мл хлороформного экстракта мозга и осторожно подслаивают по стенке пробирки 1 мл концентрированной серной кислоты. Пробирку легко встряхивают. На границе двух жидкостей появляется кольцо красного цвета, затем вся жидкость принимает последовательно красную, оранжевую и красно-фиолетовую окраску.

б. Реакция Либермана-Бурхарда. Метод основан на дегидратации холестерина с последующим соединением двух образовавшихся молекул холестерина в бихолестадиен

Бихолестадиен в присутствии уксусного ангидрида и сульфокислоты дает сульфопроизводные зеленого цвета.

Ход определения. В сухую пробирку наливают 2 мл хлороформного экстракта мозга и добавляют в нее 10 капель уксусного ангидрида и 2 капли концентрированной серной кислоты. Появляется вначале красное окрашивание, переходящее затем в сине-зеленое и зеленое.

в. Реакция Витби. Метод, как и в предыдущих реакциях, основан на образовании окрашенных производных дегидратированного и окисленного холестерина под действием серной кислоты.

Ход определения. В одну пробирку вносят 2 мл хлороформного экстракта мозга, в другую – 2-3 капли растительного масла и 1 мл хлороформа. В обе пробы добавляют по 20 капель смеси формалина с серной кислотой и встряхивают. Растворы делятся на два слоя – верхний (хлороформный) окрашивается в яркий вишневый цвет, нижний (кислотный) – в тусклый буро-красный с зеленой флуоресценцией.

+Из хлороформного слоя обеих пробирок отбирают пипеткой несколько капель, переносят в другие (сухие!) пробирки и прибавляют по 2 капли уксусного ангидрида. Вишневая окраска переходит в сине-зеленую.

11. Как определить наличие перекисных продуктов в жирах

При взбалтывании хлороформного раствора масла в кислой среде с раствором KI, раствор приобретает желтую окраску, обусловленную молекулярным йодом, который выделяется при окислении KI перекисными соединениями. Присутствие йода подтверждается окрашиванием крахмала в синий цвет

12. Определение в составе жира ненасыщенных ЖК

При добавлении бромной воды к ненасыщенным ЖК произойдет бромирование ат С по месту двойной связи. Желтая окраска брома исчезнет

 



Поделиться:


Последнее изменение этой страницы: 2021-02-07; просмотров: 154; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.142.12.240 (0.016 с.)