Методы передачи дискретных данных на физическом уровне 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Методы передачи дискретных данных на физическом уровне



При передаче дискретных данных по каналам связи применяются два основных типа физического кодирования - на основе синусоидального несущего сигнала и на основе последовательности прямоугольных импульсов. Первый способ часто называется так­же модуляцией или аналоговой модуляцией, подчеркивая тот факт, что кодирование осуществляется за счет изменения параметров аналогового сигнала. Второй способ обычно называют цифровым кодированием.

В настоящее время все чаще данные, изначально имеющие аналоговую форму - речь, телевизионное изображение, - передаются по каналам связи в дискретном виде, то есть в виде последовательности единиц и нулей. Процесс представления аналоговой информации в дискретной форме называется дискретной модуляцией. Термины «модуляция» и «кодирование» часто используют как синонимы.

Аналоговая модуляция

Аналоговая модуляция применяется для передачи дискретных данных по каналам с узкой полосой частот, типичным представителем которых является канал то­нальной частоты, предоставляемый в распоряжение пользователям общественных телефонных сетей. Этот канал передает частоты в диапазоне от 300 до 3400 Гц, таким образом, его полоса пропускания равна 3100 Гц. Хотя че­ловеческий голос имеет гораздо более широкий спектр - примерно от 100Гц до 10 кГц, - для приемлемого качества передачи речи диапазон в 3100 Гц является хорошим решением. Строгое ограничение полосы пропускания тонального канала связано с использованием аппаратуры уплотнения и коммутации каналов в теле­фонных сетях.

Методы аналоговой модуляции

Аналоговая модуляция является таким способом физического кодирования, при котором информация кодируется изменением амплитуды, частоты или фазы сину­соидального сигнала несущей частоты; Основные способы аналоговой модуляции показаны на Рис.1. 18.

На диаграмме показана последовательность бит исходной информации, представленная потенциалами высокого уровня для логической единицы и потенциалом нулевого уровня для логического нуля. Такой способ кодирования называется потенциальным кодом, который часто использует­ся при передаче данных между блоками компьютера.

При амплитудной модуляции (рис.1.18, б) для логической единицы выбирается один уровень амплитуды синусоиды несущей частоты, а для логического нуля - другой. Этот способ редко используется в чистом виде на практике из-за низкой помехоустойчивости, но часто применяется в сочетании с другим видом модуля­ции - фазовой модуляцией.

При частотной модуляции (рис.1.18, в) значения 0 и 1 исходных данных пере­даются синусоидами с различной частотой – f 0 и f 1. Этот способ модуляции не требует сложных схем в модемах и обычно применяется в низкоскоростных моде­мах, работающих на скоростях 300 или 1200 бит/с.

Рис.1. 18 Различные типы модуляции

При фазовой модуляции (рис.ю18, г) значениям данных 0 и 1 соответствуют сигналы одинаковой частоты, но с различной фазой, например 0 и 180 градусов или 0,90,180 и 270 градусов.

В скоростных модемах часто используются комбинированные методы модуля­ции, как правило, амплитудная в сочетании с фазовой. Наиболее распространенными являются методы квадратурной амплитудной модуляции (Quadrature Amplitude Modulation, QAM).

 

Цифровое кодирование

При цифровом кодировании дискретной информации применяют потенциальные и импульсные коды.

В потенциальных кодах для представления логических единиц и нулей исполь­зуется только значение потенциала сигнала, а его перепады, формирующие закон­ченные импульсы, во внимание не принимаются.

Импульсные коды позволяют представить двоичные данные либо импульсами определенной полярности, либо частью импульса - перепадом потенциала определенного направления.

Требования к методам цифрового кодирования

При использовании прямоугольных импульсов для передачи дискретной инфор­мации необходимо выбрать такой способ кодирования, который одновременно до­стигал бы нескольких целей:

§ имел при одной и той же битовой скорости наименьшую ширину спектра ре­зультирующего сигнала;

§ обеспечивал синхронизацию между передатчиком и приемником;

§ обладал способностью распознавать ошибки;

§ обладал низкой стоимостью реализации.

 Более узкий спектр сигналов позволяет на одной и той же линии (с одной и той же полосой пропускания) добиваться более высокой скорости передачи данных. Кроме того, часто к спектру сигнала предъявляется требование отсутствия посто­янной составляющей, то есть наличия постоянного тока между передатчиком и приемником. В частности, применение различных трансформаторных схем гальва­нической развязки препятствует прохождению постоянного тока.

Синхронизация передатчика и приемника нужна для того, чтобы приемник точно знал, в какой момент времени необходимо считывать новую информацию с линии связи. Эта проблема в сетях решается сложнее, чем при обмене данными между близко расположенными устройствами, например между блоками внутри компью­тера или же между компьютером и принтером. На небольших расстояниях хорошо работает схема, основанная на отдельной тактирующей линии связи так, что информация снимается с линии данных только в момент прихода так­тового импульса.

В сетях использование этой схемы вызывает трудности из-за неоднородности характеристик проводников в кабелях. На больших расстояниях неравномерность скорости распространения сигнала может привести к тому, что тактовый импульс придет настолько позже или раньше соответствующего сигнала данных, что бит данных будет пропущен или считан повторно. Другой причиной, по которой в сетях отказываются от использования тактирующих импульсов, яв­ляется экономия проводников в дорогостоящих кабелях.

Поэтому в сетях применяются так называемые самосинхронизирующиеся коды, сигналы которых несут для передатчика указания о том, в какой момент времени нужно осуществлять распознавание очередного бита (или нескольких бит, если код ориентирован более чем на два состояния сигнала). Любой резкий перепад сигнала - так называемый фронт - может служить хорошим указанием для синх­ронизации приемника с передатчиком.

При использовании синусоид в качестве несущего сигнала результирующий код обладает свойством самосинхронизации, так как изменение амплитуды несу­щей частоты дает возможность приемнику определить момент появления входно­го кода.

Распознавание и коррекцию искаженных данных сложно осуществить средствами физического уровня, поэтому чаще всего эту работу берут на себя протоколы, ле­жащие выше: канальный, сетевой, транспортный или прикладной. С другой сторо­ны, распознавание ошибок на физическом уровне экономит время, так как приемник не ждет полного помещения кадра в буфер, а отбраковывает его сразу при распо­знавании ошибочных бит внутри кадра.

Методы кодирования, чаще всего, используются следующие:

§ Потенциальный код без возвращения к нулю

§ Метод биполярного кодирования с альтернативной инверсией - Bipolar Alternate Mark Inversion, AMI (модификация NRZ)

§ Потенциальный код с инверсией при единице

§ Биполярный импульсный код

§ Манчестерский код

§ Потенциальный 2B 1Q

Рис.1. 19 Способы дискретного кодирования данных

 

 

Лекция 4. 

 



Поделиться:


Последнее изменение этой страницы: 2020-11-23; просмотров: 413; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.216.186.164 (0.009 с.)