Гипотеза дрейфа материков А. Вегенера 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Гипотеза дрейфа материков А. Вегенера



Гипотеза дрейфа материков А. Вегенера

Гипотезу дрейфа или движения материков впервые высказал немецкий ученый Альфред Вегенер в 1912 году. Он первым обратил внимание на сходство атлантических побережий Африки и Южной Америки и предположил, что они когда-то составляли единое целое. Ещё одним доказательством справедливости своей гипотезы учёный посчитал сходство состава горных пород и палеонтологических образцов растительного и животного мира атлантического побережья Африки и Южной Америки.

Альфред Вегенер предположил, что 200 миллионов лет назад на планете существовал один суперматерик – Пангея, который вскоре раскололся на два материка: Лавразию и Гондвану. Дальнейший распад существующих материков определил современный облик Земли.

К сожалению, ранняя гибель не позволила Вегенеру продолжить дальнейшую работу над подтверждением своей гипотезы.

Наше время:

Перемещение материков все еще продолжается. Сегодня ученные могут делать предположения о том, как наша планета будет выглядеть в будущем.

Учёные предполагают, что через 50 млн лет Атлантический и Индийский океаны станут существенно шире. Соответственно сократится площадь Тихого океана. Средиземное море исчезнет совсем. Северная Америка отделится от Южной и соединится с Евразией. Северная и Южная Америки сместятся к западу, Африка – к северо-востоку и сомкнётся с Евразией, Европа, Азия и Индия – к востоку, Австралия – к северу по направлению к Азии и достигнет экватора, тогда как Антарктида почти не изменит своего положения по отношению к Южному полюсу.

 

Литосферные плиты

Земная кора не является монолитной и состоит из отдельных крупных блоков – литосферных плит. Границами литосферных плит являются глубинные разломы, протяжённость которых может составлять тысячи километров. Наиболее крупными литосферными плитами являются Евразийская, Африканская, Северо-Американская, Южно-Американская, Индо-Австралийская, Антарктическая и Тихоокеанская. В состав этих плит входят материки и прилегающие части океанов, и лишь Тихоокеанская плита не имеет материка в своём составе. Существуют также меньшие по площади плиты, например Наска, Кокос и другие.

Литосферные плиты движутся относительно друг друга в различных направлениях: сходятся, расходятся или перемещаются параллельно друг другу. Средняя скорость горизонтального движения литосферных плит измеряется несколькими сантиметрами в год.

Движение тектонических плит

Литосферные плиты перемещаются относительно друг друга в среднем со скоростью 2,5 см в год. При движении плиты между собой взаимодействуют, особенно вдоль границ, вызывая значительные деформации в земной коре.

В результате взаимодействия тектонических плит между собой образовались массивные горные хребты и связанные с ними системы разломов (например, Гималаи, Пиренеи, Альпы, Урал, Атлас, Аппалачи, Апеннины, Анды, система разломов Сан-Андреас и др.). Трение между плитами вызывает большую часть землетрясений на планете, вулканическую активность и образование океанических ям.

В состав тектонических плит входит два типа литосферы: континентальная кора и океаническая кора.

Тектоническая плита может быть трех типов:

· континентальная плита,

· океаническая плита,

· смешанная плита.

Характеристика вулканов

Вулканы отличаются от остальных гор не только составом, но и строгими внешними очертаниями. От кратеров на вершине вулканов вниз тянутся глубокие узкие овраги, образованные потоками воды. Существуют также целые вулканические горы, сформированные несколькими рядом расположенными вулканами и продуктами их извержений.

Однако вулкан далеко не всегда является горой, дышащей огнем и жаром. Даже действующие вулканы могут выглядеть как прямолинейные трещины на поверхности планеты. Особенно много таких «плоских» вулканов в Исландии (самый известный из них, Эльдгья, имеет длину 30 км).

Виды вулканов

По активности, вулканы делят на три категории: действующие, спящие и потухшие. Действующим вулкан считается если он извергался в течение последних 10 000 лет. Спящим — если длительное время не проявлял какую-либо активность. «Сон» такого вулкана может составлять 700 000 лет, как это было в случае с Йеллоустоун или с вулканом Тоба, который дремал порядка 380 000 лет. Ну и наконец, потухшим считается тот вулкан, который не получает подпитку лавой.

Могучие вулканы отличаются друг от друга не только активностью, но и формой, типом извержения, расположением и множеством других параметров. Существует много неклассифицированных вулканов, но в то же время, выделяют основные распространенные типы.

Щитовые вулканы

Это природные постройки с пологими склонами. Тип их извержения — исландский или гавайский (трещинные излияния). Извержения гавайского типа, характеризуется выбросами очень жидкой, высокоподвижной базальтовой лавы. При этом, могут образовываться лавовые озера с фонтанами на сотни метров в высоту. В то же время лавовые потоки небольшой мощности, растекаются на десятки километров.

Стратовулканы

Конические формирования, вокруг жерла которых, развивается чётко выраженный пологий или же крутой слоистый конус. Типы извержения у этих вулканов могут быть такие как: стромболианский (спокойное, продолжительное извержение), вулканский (большие эруптивные облака), плинианский (пирокластические потоки), кальдеро-образующий, фреатический (выбросы бомб и обломков), пелейский (раскалённые лавины или палящие тучи).

Как правило, преобладают извержения вулканианского и плинианского типов. Мощные взрывы, сопровождающиеся выбросами огромного количества тефры, образующей пепловые и пемзовые потоки. Именно под тефрой, во время извержения Везувия, были погребены Помпеи. Плинианские извержения опасны, в том числе и потому, что происходят внезапно и часто без длительной, предварительной подготовки.

К этому типу относится грандиозный взрыв в 1883 г. индонезийского вулкана Кракатау, звук от которого был слышен на расстоянии до 5 000 км, а вулканический пепел поднялся на стокилометровую высоту. Его извержение сопровождалось цунами, в огромных волнах которого (25-40 м) погибло десятки тысяч человек. А в результате, на месте группы островов Кракатау, образовалась гигантская кальдера.

Супервулканы (Кальдеры)

Они образуются за счет катастрофического взрыва или коллапса пустого очага магмы, оставившего после себя круглую впадину. Кальдера может представлять опасность вплоть до континентального масштаба. Типы извержения таких вулканов, главным образом плинианский (пирокластические потоки) или пелейский (раскалённые лавины или палящие тучи).

Супервулкан самый опасный тип вулкана. Извержения таких вулканов могут быть причиной сильных глобальных похолоданий, продолжающихся несколько лет подряд. Снижение температур происходит в результате попадания в атмосферу огромных масс серы и пепла. Примеры включают: Йеллоустоун Кальдера в Национальном парке Йеллоустоун и Валлес Кальдера в Нью Мексико, озеро Таупо в Новой Зеландии, озеро Тоба на Суматре и Нгорогоро Кратер в Танзании, а также Кракатоа вблизи Явы и Суматре.

Шлаковые конуса

Во время извержения вулкана, большие куски шлаков накладываются вокруг кратера в виде конуса, а мелкие образуют пологие склоны, в результате с каждым последующим извержением вулкан быстро растет в высоту. Подобный вулкан может непрерывно извергаться в течении десятилетий, а за год своей активности он способен вырасти на 300-400 метров. Примером шлакового конуса может служить Парикутин в Мексике или камчатский Плоский Толбачик, расположенный на основании древнего щитового вулкана.

Сложные вулканы

Эти вулканы представляют собой сочетание нескольких типов указанных выше. К ним относятся Хома в Кении, Пакая в Гватемале, а также Келимуту в Индонезии.

Этапы извержения

Подготовительный

На этом этапе магма, богатая газами, заполняет магматическую камеру вулкана, которая может находиться в десятках километров от поверхности. Внутри камеры очень жарко, температура превышает 1000°С. На теле вулкана образовываются трещины и аппаратные измерения фиксируют расширения горы. В это время можно видеть пар, поднимающийся из вулкана — это испаряется вода при контакте с горячей магмой. Увеличивается, как правило, и сейсмическая активность.

Активный

Поскольку давление в магматической камере постоянно увеличивается, в определенный момент, наступает взрыв — извержение. Взрывной волной выбрасывает все чем богат на данный момент вулкан. В первую очередь — это водяной пар, вулканические газы и пепел. В то же время благодаря пробивному толчку открываются каналы и вверх начинает подниматься магма. Красное или оранжевое свечение можно видеть, когда она достигает поверхности. И наконец выплескиваясь, горячая магма остывает превращаясь в лаву. В результате взрыва разрушаются стенки вулкана и куски камней кальдеры при этом, могут разлетаться на сотни метром.

Завершающий

На этой фазе магматическая камера опустошается, а утонченные стенки каналов разрушаются, создавая или же увеличивая кратер или кальдеру вулкана.

Даже если фактическая деятельность в вулкане прекратилась, опасными остаются последствия извержения. Так облака пепла, состоящие из крошечных минеральных частиц могут достигать в высоту более 30 000 метров и перемещаться на сотни километров. Вулканический пепел не растворяется в воде и при соединении с ней может превратится в бетон. А если сразу после мощного извержения на укрытые толстым слоем пепла крыши домов пойдет дождь, это может привести к массовому обрушению. «Вулканический снег» в больших объемах, способен организовать глобальное похолодание, погубить животных, уничтожить растения, а также вывести из строя технику.

Еще одно «эхо» вулканов — вулканические грязевые потоки, известные как лахары. Они образуются в следствии соединения вулканического мусора с водой и абсолютно всем, что попадется на пути мощного течения. Такие потоки могут приводить к локальным разрушениям, затоплениям, повреждению дренажных систем и вентиляционных отверстий.

Тихоокеанскую подвижную зону называют circum-Pacific orogenic belt, известный также как Ring of Fire.

Глубинные корни вулканов изучаются методами геофизики: аппаратура улавливает идущие из недр упругие колебания, тепловой поток, прохождение естественных электрических токов. С помощью геофизических методов можно просвечивать недра упругими волнами и получать объемное изображение образований (метод томографии). Наконец, по аномалиям силы тяжести выявляется распределение масс и определяются магнитные свойства тех или иных объемов глубинного вещества.

Однако корни вулканов Тихоокеанского обрамления прослеживаются гораздо глубже, чем это предполагали прежде, а зарождение и размещение вулканов строго обусловлены геологической обстановкой.

На сходящихся границах литосферных плит происходит субдукция. По мере субдукции океаническая литосфера попадает в область все более высоких температур и давлений, где из нее выделяются перегретые минеральные флюиды. От наклонной зоны субдукции эти флюиды и тепловой поток направляются вверх, возбуждая плавление горных пород и образование магмы. В свою очередь, магма прорывается на земную поверхность, порождая вулканические извержения.

Так над зоной субдукции образуются связанные с нею вулканы.

В Тихом океане находится несколько зон спрединга океанической литосферы, главная из которых Восточно-Тихоокеанская. По периферии океана происходит субдукция этой литосферы под обрамляющие континенты и Тихоокеанское огненное полукольцо.

Соотношения между вулканами и уходящей под них зоной субдукции можно рассмотреть на примере Камчатки: ее геологическое строение подробно изучено, а действующие вулканы (их около 30) находятся под постоянным наблюдением ученых. Эта часть вулканического кольца приурочен к активной границе двух крупных литосферных плит: Тихоокеанская плита, которая движется здесь на северо-запад со скоростью 8-9 см/год, пододвигается под почти неподвижный континентальный край.

Согласно некоторым расчетам, этот край, возможно, тоже перемещается на северо-запад, но очень медленно (со скоростью менее 1 см/год).

Таким образом, скорость относительного схождения (конвергенции) литосферных плит близка здесь к 8 см/год, что определяет и скорость субдукции. В рельефе морского дна линия соприкосновения двух литосферных плит выражена узким и глубоководным (до 8 км) Камчатским желобом.

На Камчатской зоне субдукции Тихоокеанская плита сначала полого пододвигается под камчатскую континентальную окраину, затем перегибается и уходит на глубину под углом около 55о. Это старая, меловая, мощностью около 70 км, остывшая и упругая океаническая литосфера, которая хорошо различима ниже, где погружается в разогретый и размягченный материал астеносферы. С помощью сейсмической томографии удалось проследить субдуцирующую плиту очень глубоко. В отличие от многих других зон субдукции, здесь литосфера пересекает границу верхней и нижней мантии Земли (в 670 км от поверхности), достигая глубин более 1000 км. При этом, погружаясь наклонно, Тихоокеанский слэб проходит под всей Камчаткой, а далее под Охотское море.

Субдукция под Камчатку сопровождается образованием очагов землетрясений. Они появляются уже на первом перегибе литосферы у глубоководного желоба (очаги растяжения на своде и сжатия внутри изгибающейся плиты).

Затем следуют многочисленные и сильные очаги скалывающих напряжений на контакте двух сходящихся литосферных плит - там, где одна из них отжимается вниз и начинает пододвигаться. Наконец, еще ниже, где океаническая плита пересекает вязкую астеносферу, очаги зарождаются внутри нее до тех пор, пока плита не разогреется и не утратит способность к хрупким деформациям. Это очаги растяжения и сжатия, порожденные температурными и иными изменениями объема пород. Как видно на разрезе, такие очаги землетрясений сначала (до некоторой глубины) размещаются в два ряда, это обусловлено большой толщиной субдуцирующей литосферы. В целом вырисовывается наклонная сейсмическая зона, берущая начало от Камчатского желоба и доходящая до глубин 500-550 км. Подобные наклонные системы очагов характерны для всех современных зон субдукции по зоне Беньофа, кое-где они достигают глубин около 700 км.

Размещение активных вулканов согласуется с зоной Беньофа и почти все извержения происходят там, где субдуцирующая литосфера достигает глубин 100-200 км. Но именно на таких глубинах под вулканическим поясом очагов землетрясений мало: в зоне Беньофа прослеживается слабосейсмичный пробел, который означает снижение упругих свойств субдуцирующей литосферы.

Наиболее вероятной причиной этого считают массовое выделение флюидов, поскольку литосфера, перемещаясь на глубину, достигает критических значений температуры и давления.

Подъем горячих флюидов формирует магматические очаги и вулканический пояс.

По всему Тихоокеанскому полукольцу корни действующих вулканов прослеживаются до субдукционного слэба. Условия субдукции от места к месту меняются: различен возраст (толщина и температурные условия) пододвигающейся океанической литосферы и скорости субдукции. Под Марианской и Идзу-Бонинской вулканическими дугами, земная кора над слэбом в фундаменте вулкана очень тонкая, сложенная железисто-магнезиальными породами. Под Андами кора толстая, богата кремнием и алюминием. Все это сказывается на характере вулканических извержений и составе изливающихся лав. Но геологические причины вулканизма по всему Тихоокеанскому кольцу сходны, они определяются субдукцией, направленной от океана под его обрамление.

От места к месту меняется и угол наклона зоны субдукции, но остаются постоянными глубины, по достижении которых уходящая вниз литосфера дает начало магматическим очагам (около100-200 км), поэтому при больших углах наклона вулканический пояс приближен к глубоководному желобу, а при малых углах - удален.

Эти простые геометрические соотношения соблюдаются по всему Тихоокеанскому кольцу, потому что в наши дни Тихий океан с его непосредственным обрамлением работает как единая геологическая система планетарного масштаба, в которой кольцо активных вулканов занимает вполне определенное место. Поднимающиеся под зонами спрединга, а затем расходящиеся потоки астеносферного вещества поддерживают разрастание океанической литосферы и ее перемещение к зонам субдукции на периферии океана, где весь избыток новообразованной литосферы пододвигается под континентальное обрамление и поглощается на глубине. При этом от субдуцирующей литосферы отделяются и направляются вверх флюиды, которые вместе с тепловым потоком дают начало магматическим очагам и вулканам. Пока вся эта система действует, развивается и вулканическое ожерелье Тихого океана.

 

ИСТОРИЯ ВУЛКАНИЧЕСКОГО КОЛЬЦА

200-225 Ма все континенты были слиты в единый суперконтинент Пангея, охватывавший около 40% ее поверхности. Окружавший Пангею единый океан Панталасса, охватывавший всю остальную поверхность планеты, по своим размерам был близок суммарной площади всех современных океанов.

Огромный залив вдавался в суперконтинент между Евразией и Австралией, его называют океаном Тетис. В срединных хребтах Панталассы, так же как и в современном Тихом океане, происходило разрастание океанической литосферы от осей спрединга, и эта литосфера со всех сторон пододвигалась под Пангею, субдуцировала и поглощалась на глубине. В целом глобальную систему зон субдукции того времени можно уподобить гигантской воронке диаметром около 18 тыс. км.

Над зонами субдукции, окружавшими Пангею, развивались вулканы -обнаружены мощные пояса вулканических пород, образовавшиеся в раннем мезозое на периферии суперконтинента. Они хорошо сохранились в виде сегментов, разобщенных при последующем распаде Пангеи.

Пангейские вулканические пояса прослежены на востоке Австралии и в Новой Зеландии, в Антарктиде, Андах и Кордильерах, вдоль восточных окраин Азии и в Средиземноморско-Гималайском складчатом поясе.

Во второй половине юрского периода Пангея начала распадаться. Ее пересекли разломы и рифты, а осколки суперконтинента начали удаляться друг от друга. По мере центробежного перемещения фрагментов Пангеи, между ними раскрывались Атлантический и Индийский океаны с их ответвлениями, одно из которых прослеживается в Северном Ледовитом океане.

Площадь Панталассы соответственно сокращалась, а то, что осталось, мы и называем Тихим океаном.

При распаде Пангеи, обрамлявшее ее кольцо зон субдукции и вулканизма оказалось разорванным. В ходе центробежного движения каждый континент наезжал на свой отрезок субдукционного кольца, отодвигая его. Поэтому на фронтальной стороне расходившихся континентов субдукция продолжалась, не прекращался вулканизм. Так, после распада кольца Пангеи обособились, но продолжали действовать вулканический пояс Кордильер Северной Америки и сходный с ним пояс Анд.

 

На активной окраине Азии мелового времени таким же образом формировался Охотско-Чукотский вулканический пояс. Длиной более 3000 км и шириной 100-300 км он протянулся вдоль всего Хабаровского края. По размещению магматических пород пояса и особенностям их состава были определены угол наклона и другие характеристики уходившей под него зоны субдукции. Этот вулканический пояс отмер в палеогене, когда со стороны океана к азиатской континентальной окраине причленились складчатые сооружения Корякского нагорья и Камчатки. Вместо него над зоной субдукции образовалась Курило-Камчатская вулканическая дуга, действующая до наших дней.

По мере центробежного перемещения континентов все дальше отодвигались как зоны субдукции, так и фрагменты распавшегося пангейского вулканического кольца. Со временем, пройдя линию большого круга Земли, они оказались на противоположной стороне земной сферы и, продолжая встречное движение, стали сближаться.

Наступая со всех сторон на пространство, оставшееся от Панталассы, они замкнули его. Так определились контуры современного Тихого океана, а из отдельных вулканических поясов сложилось Тихоокеанское огненное кольцо, впрочем, все еще не полностью сомкнувшееся. Таким образом, по своему происхождению Тихоокеанское кольцо представляет собой как бы вывернутое наизнанку вулканическое кольцо Пангеи.

Вокруг Тихого океана - от Чили до Индокитая и Чукотки разместились важнейшие месторождения меди, свинца, цинка, олова, молибдена, вольфрама, серебра, золота.

Формирование этих месторождений началось еще на обрамлении Пангеи.

 

БУДУЩЕЕ ТИХООКЕАНСКОГО ВУЛКАНИЧЕСКОГО КОЛЬЦА

Распад Пангеи и центробежное перемещение ее фрагментов продолжаются в наши дни.

Поэтому континенты, окружающие Тихий океан, все еще наступают на него, а тихоокеанское вулканическое кольцо сокращается.

По данным GPS оказалось, что и в настоящее время сохраняются приблизительно те же направления и скорости движений, что и 3 Ма.

Быстрее всего наступают на Тихий океан Северная Америка (около 2,5 см/год) и Южная Америка (около 3,5 см/год).

Австралия перемещается даже с большей скоростью (до 7,5 см/год), но под острым углом к границе с океаном.

Антарктида тоже наступает, но очень медленно (1 см/год и менее). Только Евразия почти не смещается и даже, вероятно, немного отступает от океана в северо-западном направлении.

Зная эти скорости, нетрудно рассчитать, где окажутся континенты через 10 или 20- Му и какими будут очертания Тихого океана. Главное условие расчета - постоянство направления и скорости движения литосферных плит, что вообще-то противоречит геологическим реальностям, но только этот тренд и поддается расчету.

Можно полагать, что дальнейшее встречное движение континентов тихоокеанского обрамления, обусловленное распадом Пангеи, все же замедлится согласно циклам суперконтинентов. Полная длительность этапов распада суперконтинентов - около 200 Му. Современный нам незавершившийся этап распада Пангеи начался уже 165-170 Ма и близок к своему завершению.

Есть некоторые признаки близости предстоящего перехода от распада Пангеи к новому объединению континентальных единиц.

Главный из них - зрелость раскрывающихся межконтинентальных океанов, особенно Атлантического.

Нараставшие с возрастом толщина и плотность подстилающей их литосферы местами приближаются к тем критическим значениям, при которых океаническая литосфера потеряет свою плавучесть и начнет погружаться в подстилающую астеносферу. Это способствует прекращению раскрытия межконтинентальных океанов и создаст механизм для их сокращения.

Вполне вероятно, что через несколько десятков миллионов лет тихоокеанское вулканическое кольцо, сжатое и полное, будет разорвано на самостоятельные сегменты.

Эти сегменты начнут удаляться один от другого вместе со своими континентами, которые будут двигаться к центру объединения нового суперконтинента.

Самые мощные извержения вулканов:

Везувий, 24−25 августа 79 г. н. э.

Вулкан Этна, 1669 год

Вулкан Тамбора, 1815 год

Вулкан Мон-Пеле, 1902 год

Вулкан Руис, 1985 год

4. *Землетрясения (общая характеристика, распространение, типы землетрясений, регистрация, афтершоки, шкалы оценки силы землетрясений, примеры самых сильных землетрясений)

Землетрясение — подземные толчки и колебания земной поверхности. Согласно современным взглядам, землетрясения отражают процесс геологического преобразования планеты. Cчитается, что первопричиной землетрясений являются глобальные геологические и тектонические силы, однако в настоящее время их природа не совсем ясна. Появление этих сил связывают с перепадами температуры в недрах Земли. Большинство землетрясений возникает на окраинах тектонических плит. Замечено, что за последние два века сильные землетрясения возникли в результате вспарывания крупных разломов, выходящих на поверхность.

Причины землетрясений

Земные недра находятся в постоянном движении. В земной коре распространяются волны низкой частоты (период от секунд и выше). Можно называть колебания минутными, часовыми, суточными, годовыми. Волны, распространяющиеся по земной коре, огромны. Длина волны свыше 1000 км. Амплитуды колебаний составляют сотни метров. В этих волнах сосредоточена огромная энергия. Из-за неоднородностей в земной коре возникают колебания близкие по частоте, которые начинают интерферировать между собой, что приводит к образованию резонансных колебаний в одних точках земной коры и подавлению колебаний в других — «биения». Происходит перераспределение энергии колебаний по поверхности Земли.

Землетрясения происходят в тех точках, где поверхность земли не может пластично реагировать на многократное увеличение амплитуды колебаний.

Теория «накопления напряжений» не может объяснить механизм сохранения и удержания энергии перед землетрясением.

Очевидный способ прогнозирования, наблюдение за длиннопериодными колебаниями в разных частях планеты (в том числе с помощью гравиметров) и реагирование на многократное увеличение амплитуды колебаний в проблемных местах.

Наличие радиальных (а также тангенциальных) смещений земной коры, не катастрофических, «пластичных» (без разрушения земной коры) может стать причиной отказа навигационной системы на воздушном транспорте или внезапного выезда на встречную полосу автомобиля движущегося с большой скоростью

Типы сейсмических волн

Сейсмические волны делятся на волны сжатия и волны сдвига.

· Волны сжатия, или продольные сейсмические волны, вызывают колебания частиц пород, сквозь которые они проходят, вдоль направления распространения волны, обуславливая чередование участков сжатия и разрежения в породах. Скорость распространения волн сжатия в 1,7 раза больше скорости волн сдвига, поэтому их первыми регистрируют сейсмические станции. Волны сжатия также называют первичными (P-волны). Скорость P-волны равна скорости звука в соответствующей горной породе. При частотах P-волн, больших 15 Гц, эти волны могут быть восприняты на слух как подземный гул и грохот.

· Волны сдвига, или поперечные сейсмические волны, заставляют частицы пород колебаться перпендикулярно направлению распространения волны. Волны сдвига также называют вторичными (S-волны).

Существует ещё третий тип упругих волн — длинные или поверхностные волны (L-волны). Именно они вызывают самые сильные разрушения.

Шкала магнитуд

Шкала магнитуд различает землетрясения по величине магнитуды, которая является относительной энергетической характеристикой землетрясения. Существует несколько магнитуд и соответственно магнитудных шкал: локальная магнитуда (ML); магнитуда, определяемая по поверхностным волнам (Ms); магнитуда, определяемая по объемным волнам (mb); моментная магнитуда (Mw).

Наиболее популярной шкалой для оценки энергии землетрясений является локальная шкала магнитуд Рихтера. По этой шкале возрастанию магнитуды на единицу соответствует 32-кратное увеличение освобождённой сейсмической энергии. Землетрясение с магнитудой 2 едва ощутимо, тогда как магнитуда 7 отвечает нижней границе разрушительных землетрясений, охватывающих большие территории. Интенсивность землетрясений (не может быть оценена магнитудой) оценивается по тем повреждениям, которые они причиняют в населённых районах.

Шкалы интенсивности

Интенсивность является качественной характеристикой землетрясения и указывает на характер и масштаб воздействия землетрясений на поверхность земли, на людей, животных, а также на естественные и искусственные сооружения в районе землетрясения. В мире используется несколько шкал интенсивности: в США — Модифицированная шкала Меркалли (MM), в Европе — Европейская макросейсмическая шкала (EMS), в Японии — шкала Шиндо (Shindo).

Измерительные приборы

Для обнаружения и регистрации всех типов сейсмических волн используются специальные приборы — сейсмографы. В большинстве случаев сейсмограф имеет груз с пружинным прикреплением, который при землетрясении остаётся неподвижным, тогда как остальная часть прибора (корпус, опора) приходит в движение и смещается относительно груза. Одни сейсмографы чувствительны к горизонтальным движениям, другие — к вертикальным. Волны регистрируются вибрирующим пером на движущейся бумажной ленте. Существуют и электронные сейсмографы (без бумажной ленты).

Тектометр — прибор, разработанный в России и запатентованный в Государственном патентном бюро Японии (регистрационный номер N 07РО369). Согласно патенту прибор позволяет регистрировать землетрясение за 40 часов до момента его начала. Прибор компактен (помещается в дипломат) и лёгок (около 1 кг).

 

Вулканические землетрясения

Вулканические землетрясения — разновидность землетрясений, при которых землетрясение возникает в результате высокого напряжения в недрах вулкана. Причина таких землетрясений — лава, вулканический газ. Землетрясения этого типа слабы, но продолжаются долго, многократно — недели и месяцы. Тем не менее, опасности для людей этого вида землетрясение не представляет.

Техногенные землетрясения

В последнее время появились сведения, что землетрясения могут вызываться деятельностью человека. Так, например, в районах затопления при строительстве крупных водохранилищ, усиливается тектоническая активность — увеличивается частота землетрясений и их магнитуда. Это связано с тем, что масса воды, накопленная в водохранилищах, своим весом увеличивает давление в горных породах, а просачивающаяся вода понижает предел прочности горных пород. Аналогичные явления происходят при выемке больших количеств породы из шахт, карьеров, при строительстве крупных городов из привозных материалов.

Обвальные землетрясения

Землетрясения также могут быть вызваны обвалами и большими оползнями. Такие землетрясения называются обвальными, они имеют локальный характер и небольшую силу.

Гипотеза дрейфа материков А. Вегенера

Гипотезу дрейфа или движения материков впервые высказал немецкий ученый Альфред Вегенер в 1912 году. Он первым обратил внимание на сходство атлантических побережий Африки и Южной Америки и предположил, что они когда-то составляли единое целое. Ещё одним доказательством справедливости своей гипотезы учёный посчитал сходство состава горных пород и палеонтологических образцов растительного и животного мира атлантического побережья Африки и Южной Америки.

Альфред Вегенер предположил, что 200 миллионов лет назад на планете существовал один суперматерик – Пангея, который вскоре раскололся на два материка: Лавразию и Гондвану. Дальнейший распад существующих материков определил современный облик Земли.

К сожалению, ранняя гибель не позволила Вегенеру продолжить дальнейшую работу над подтверждением своей гипотезы.

Наше время:

Перемещение материков все еще продолжается. Сегодня ученные могут делать предположения о том, как наша планета будет выглядеть в будущем.

Учёные предполагают, что через 50 млн лет Атлантический и Индийский океаны станут существенно шире. Соответственно сократится площадь Тихого океана. Средиземное море исчезнет совсем. Северная Америка отделится от Южной и соединится с Евразией. Северная и Южная Америки сместятся к западу, Африка – к северо-востоку и сомкнётся с Евразией, Европа, Азия и Индия – к востоку, Австралия – к северу по направлению к Азии и достигнет экватора, тогда как Антарктида почти не изменит своего положения по отношению к Южному полюсу.

 

Литосферные плиты

Земная кора не является монолитной и состоит из отдельных крупных блоков – литосферных плит. Границами литосферных плит являются глубинные разломы, протяжённость которых может составлять тысячи километров. Наиболее крупными литосферными плитами являются Евразийская, Африканская, Северо-Американская, Южно-Американская, Индо-Австралийская, Антарктическая и Тихоокеанская. В состав этих плит входят материки и прилегающие части океанов, и лишь Тихоокеанская плита не имеет материка в своём составе. Существуют также меньшие по площади плиты, например Наска, Кокос и другие.

Литосферные плиты движутся относительно друг друга в различных направлениях: сходятся, расходятся или перемещаются параллельно друг другу. Средняя скорость горизонтального движения литосферных плит измеряется несколькими сантиметрами в год.



Поделиться:


Последнее изменение этой страницы: 2020-12-19; просмотров: 1032; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.139.90.131 (0.073 с.)