Основа клеточной теории связана с именами матиаса якоба шлейдена и теодора шванна. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Основа клеточной теории связана с именами матиаса якоба шлейдена и теодора шванна.



Цитология

1 Возникновение и развитие гистологии и цитологии как самостоятельных наук. Вклад отечественных и зарубежных учёных в развитие гистологии

Гистология — наука о строении, развитии и жизнедеятельности тканей животных организмов. Развитие гистологии. В истории учения о тка­нях и микроскопическом строении органов следует различать три периода: 1-й — домикроскопический (продолжительностью около 2000 лет), 2-й — микроскопический (около 300 лет), 3-й — современный, сочетающий дости­жения в области электронной микроскопии, иммуноцитохимии, цитофотометрии и др. (с середины XX столетия). Первый период, наиболее продолжительный (с IV в. до н.э. и до середи­ны XVII в.), является собственно предысторией гистологической науки, основанной на макроскопической технике. Вследствие этого в одну группу попадали иногда такие различные ткани, как нервная и соедини­тельная (нерв и сухожилие), поэтому в середине XVII в., когда английским физиком Р. Гуком был усовершенствован микроскоп (1665), позволивший изучить тонкое строение тканей растений и животных, начинается второй период в учении о тканях. Роберт Гук ввел понятие «клетки»;Биша ввел понятия ткань и система; Гейзингер «Система гистологии»;Теодор Шванн – создал клеточные теории; Лейдиг и Келлинер создали классификацию тканей;Мари Франсуа Ксавье заложил понятие ткань, описал в своих трудах «Трактат о мембранах и оболочках»; Третий период с 1665 по 1950 характеризуется широким и комплексным использованием многих методов исследования, и прежде всего электронной микроскопии, метода замора­живания — скалывания, электронно-микроскопической цитохимии, коли­чественных методов и др.
Научно-технический прогресс, успехи развития методов исследования позволили дойти до анализа макромолекулярного уровня организации кле­ток и неклеточных структур, уточнить представления о процессах диффе- ренцировки, регенерации, передаче наследственных признаков и др. Благо­даря этому были созданы основы ультрамикроскопической цитологии и гистологии и разрабатываются проблемы молекулярной биологии.
Вклад отечественных ученых в гистологии: 1)МЕЧНИКОВ один из основоположников эволюционной эмбриологии, создание фагоцитарной теории, иммунитета 2)КОВАЛЕВСКИЙ один из основоположников сравнительной эволюционной эмбриологии, обосновал теорию зародышевых листков 3)ЗАВАРЗИН-создатель сравнительной эволюции гистологии, теории параллелизмов в эволюции ткани 4)ХЛОПИН-создатель дивергентной теории эволюции тканей, филоонтогенетической классификации тканей.

2 Основные положения клеточной теории. Роль клеточной теории в развитие гистологии и медицины. Вклад отечественных и зарубежных ученых в учение о клетке.

Клеточная теория. В настоящее время клеточная теория гласит: 1) клетка является наименьшей единицей живого, 2) клетки разных организмов принципиально сходны по своему строению, 3) размножение клеток происходит путем деления исходной клетки, 4) многоклеточные организмы представляют собой сложные ансамбли клеток и их производных, объединенные в целостные интегрированные системы тканей и органов, подчиненные и связанные между собой межклеточными, гуморальными и нервными формами регуляции.

Апоптоз и его биологическое значение.

Апоптоз – это контролируемый физиологический процесс самоуничтожения клетки, характеризующийся поэтапным разрушением и фрагментацией ее содержимого с формированием мембранных пузырьков (апоптозных телец), впоследствии поглощаемых фагоцитами. Этот генетически заложенный механизм активируется под воздействием определенных внутренних или внешних факторов.

Эмбриология

Сперматогенез.

Стадии сперматогенеза: размножение; роста; созревание-деление; формирование.

Начальной фазой сперматогенеза является размножение сперматогоний путем митоза, большая часть клеток продолжает делится, а меньшая часть вступает в стадию роста. В этот период клетки растут, накапливают питательные вещества, и потом превращаются в сперматоциты 1-го порядка. Следующая фаза созревание-деление, характеризуется двумя редукционными делениями, без интерфазы. В результате 1-го деления 1 сперматоцит 1-го порядка дает начало 2-м сперматоцитам 2-го порядка, а 2-ое деление-созревание приводит к появлению 4 сперматид. Фаза формирования происходит в присутствии тестостерона, происходит преобразование сперматид в сперматозоиды.

Сперматозоиды — это мелкие, подвижные клетки, размером 30—60 мкм. В сперматозоиде различают головку и хвост. Головка сперматозоида имеет овоидную форму и включает в себя небольшое плотное ядро, окруженное тонким слоем цитоплазмы. Ядра сперматозоидов характеризуются высоким содержанием нуклеопротаминов и нуклеогистионов. Передняя половина ядра покрыта плоским мешочком, составляющим "чехлик" сперматозоида. В нем у переднего полюса располагается акросома. Чехлик и акросома являются производными комплекса Гольджи. Акросома содержит набор ферментов, среди которых важное место принадлежит гиалуронидазе и протеазам, способным растворять оболочки, покрывающие яйцеклетку. За головкой имеется кольцевидное сужение. Головка так же, как и хвостовой отдел, покрыта клеточной мембраной. Хвостовой отдел сперматозоида состоит из связующих, промежуточных, главной и терминальной частей. В связующей части или шейке располагаются центриоли — проксимальная и дистальная, от которой начинается осевая нить (аксонема). Промежуточная часть содержит 2 центральных и 9 пар периферических микротрубочек, окруженных расположенными по спирали митохондриями. Именно митохондрии обеспечивают энергией двигательную активность сперматозоидов, нарушение которой нередко связано с поражением процесса энергообразования в митохондриях. Главная часть по строению напоминает ресничку. Она окружена тонким фибриллярным влагалищем. Терминальная, или конечная часть содержит единичные сократительные филаменты.

Овогенез.

Овогенез — это процесс образования и развития женских половых клеток. Он включает в себя 3 фазы: размножения;роста;созревания.

Фаза размножения начинается в эмбриональном периоде и продолжается в течение 1-го года жизни девочки. К моменту рождения у девочки имеется около 2-х млн клеток. К периоду полового созревания остается около 40 тыс. половых клеток и в последующем 1 раз в 28—32 дня происходит созревание и выход одной яйцеклетки в маточную трубу — овуляция. Овуляция прекращается при наступлении беременности или менопаузы. Сущностью фазы размножения является митотическое деление овогоний.

Фаза роста, в конце 1-го года жизни девочки размножение овогоний останавливается и клетки яичника вступают в фазу малого роста, превращаясь в овоциты 1-го порядка. Наступает 1 блок роста, который снимается с наступлением полового созревания, то есть появлением женских половых гормонов. Далее овоциты 1-го порядка вступают в фазу большого роста.

Фаза созревания, как и во время сперматогенеза, включает в себя два деления, причем второе следует за первым без интеркинеза, что приводит к уменьшению (редукции) числа хромосом вдвое, и набор из становится гаплоидным. При первом делении созревания овоцит 1-го порядка делится, в результате чего образуются овоцит 2-го порядка и небольшое редукционное тельце. Овоцит 2-го порядка получает почти всю массу накопленного желтка и поэтому остается столь же крупным по объему, как и овоцит 1-го порядка. Редукционное же тельце представляет собой мелкую клетку с небольшим количеством цитоплазмы. При втором делении созревания в результате деления овоцита 2-го порядка образуются одна яйцеклетка и второе редукционное тельце. Первое редукционное тельце иногда тоже делится на две одинаковые мелкие клетки. В результате этих преобразований овоцита 1-го порядка образуются одна яйцеклетка и три редукционных тельца.

Плацента. Типы плацент.

Плацента — место связи аллантохориона плода со слизистой оболочкой матки. Она образуется за счет аллантохорионной оболочки и слизистой оболочки матки. В соответствии с этим в ней различают детскую и материнскую части.

Различают: зародышевую часть: ворсинки хориона материнскую часть: слизистая матки, где имплантировался зародыш.

Морфологическая классификаци:

  диффузная: образование ворсин по всей поверхности хориона (свиньи);

островная (котиледонная): ворсинки хориона собраны в группы (котиледоны), между которыми поверхность хориона гладкая (жвачные);

поясная (зонарная): ворсинки хориона сосредоточены внутри небольшого участка, опоясывающего плодный пузырь (хищные).

дискоидальная: вид диска, ворсинки хориона распределены по всей ее поверхности равномерно (у человекообразных обезьян и человека, у мартышек и макак – бидискоидальная). В норме у всех млекопитающих кровь зародыша и кровь матери нигде не смешиваются (отделены стенками сосудов зародыша и тканями хориона).

Гистологическая классификация: по глубине погружения ворсинок хориона зародыша и степени их проникновения в слизистую оболочку матки:

эпителиохориальная: наиболее примитивная (сумчатые, парнокопытные, китообразные). Ворсинки хориона не прободают даже эпителиальной выстилки матки, а лишь погружаются в складки ее слизистой оболочки. Нет контакта между ворсинками хориона и материнской частью десмохориальная (соединительно-тканная): ворсинки хориона в месте контакта разрушают слизистую оболочку матки и внедряются в ее соединительнотканный слой, контакт по типу десмосом (жвачные).

эндотелиохориальная: устанавливается контакт между сосудами плода и матери. Ворсинки хориона отделены от сосудов матери лишь эндотелиальной стенкой (хищные).

гемохориальная: тесная связь сосудов плода и матери (приматы, грызуны). Ворсинки хориона погружаются в кровяные лакуны, заполненные кровью матери.

Основные этапы развития эмбриологии. Вклад отечественных и зарубежных учёных в развитие эмбриологии. (К.Ф. Вольф, Х.И. Пандер, К.Э. Бэр, А. О. Ковалевский, А. Г. Кнорре, О. В. Волкова, А. И. Никитин и др.).

Эбриология (от эмбрион и логос — слово, учение), наука о предзародышевом развитии (образование половых клеток), оплодотворении, зародышевом и личиночном развитии организма. Выделяют эмбриологию животных и человека и эмбриологию растений. Различают общую, сравнительную, экспериментальную и экологическую эмбриологию. Основоположники эмбриологии — Гиппократ и Аристотель, а в новое время — К. Ф. Вольф и К. М. Бэр; А. О. Ковалевский и И. И. Мечников заложили основы эволюционной эмбриологии. Решительный поворот в эмбриологии был осуществлен в 1759 г. петербургским академиком Каспаром Фридрихом Вольфом (1734–1794). В этом году Вольф представил свою диссертацию под названием «Теория зарождения». В те времена господствовало мнение физиолога и анатома А.Галлера о том, что трубчатые и мешкоподобные структуры зародыша (например, его кишечник) с самого начала имеют такую же форму, но это трудно заметить из-за тонкости стенок и их плотного слипания. Позже происходит их простое раздувание. Такое толкование строго соответствовало преформационной теории. Вольф установил совершенно иное. Кишечник, а также зачаток нервной системы сначала представляют собой пласты, которые лишь позже скручиваются в трубки. В ходе развития образуются новые формы. По сути дела Вольф открыл формообразование и тем самым дал первый позитивный и неопровержимый аргумент в пользу эпигенеза. Судьба этих, казалось бы, столь ясных работ была трудной. Под давлением господствующих авторитетов выводы Вольфа отвергались, и его работы были на некоторое время забыты.

Дальнейший прогресс в эмбриологии позвоночных связан с именами М.Ратке (1793–1860), X.Пандера (1794–1865) и К.Бэра (1792–1876). Пандер в 1817г. впервые описал зародышевые листки. Он нашел, что зародыш цыпленка на определенной стадии состоит из трех пластов: наружного – серозного, самого глубокого – слизистого и промежуточного – кровяного.

Гипотеза Дарвина оказалась мощным стимулом к эмбриологическим исследованиям. На основе эволюционной теории ученые разных стран за считанные годы выяснили развитие обширных, ранее совершенно не изученных групп организмов. Среди них первыми были русские эмбриологи А.О.Ковалевский (1840–1901) и И.И.Мечников (1845–1916). Особое значение имели работы Ковалевского по развитию ланцетника и асцидий, в которых были продемонстрированы сходные черты в развитии позвоночных и беспозвоночных животных. Эти исследования способствовали укреплению взглядов на эволюцию как на сквозной монофилетический процесс. А.О.Ковалевский – один из основоположников теории зародышевых листков.

 

III. ОБЩАЯ ГИСТОЛОГИЯ

IV. ЭПИТЕЛИАЛЬНЫЕ ТКАНИ

Эритроциты: размеры, форма, строение, функции, классификация по форме, размерам и степени зрелости. Особенности строения плазмолеммы эритроцита и его цитоскелета. Виды гемоглобина и связь с формой эритроцита. Ретикулоциты.

Эритроциты, или красные кровяные тельца, человека и млекопитающих представляют собой безъядерные клетки, утратившие в процессе фило- и онтогенеза ядро и большинство органелл. Эритроциты являются высокодифференцированными постклеточными структурами, неспособными к делению.

Размеры. Эритроцитов в нормальной крови также варьируют. Большинство эритроцитов (75 %) имеют диаметр около 7,5 мкм и называются нормоцитами. Остальная часть эритроцитов представлена микроцитами (~ 12,5 %) и макроцитами (~ 12,5 %). Микроциты имеют диаметр < 7,5 мкм, а макроциты >7,5 мкм. Изменение размеров эритроцитов встречается при заболеваниях крови и называется анизоцитозом.

Форма и строение. Популяция эритроцитов неоднородна по форме и размерам. В нормальной крови человека основную массу (80—90 %) составляют эритроциты двояковогнутой формы — дискоциты. Кроме того, имеются планоциты (с плоской поверхностью) и стареющие формы эритроцитов — шиловидные эритроциты, или эхиноциты (~ 6 %), куполообразные, или стоматоциты (~ 1—3 %), и шаровидные, или сфероциты (~ 1 %).

Химический состав. Плазмолемма. Плазмолемма эритроцита состоит из бислоя липидов и белков, представленных приблизительно в равных количествах, а также небольшого количества углеводов, формирующих гликокаликс. Большинство липидных молекул, содержащих холин (фосфатидилхолин, сфин-гомиелин), расположены во внешнем слое плазмолеммы, а липиды, несущие на конце аминогруппу (фосфатидилсерин, фосфатидилэтаноламин), лежат во внутреннем слое. Часть липидов (~ 5 %) наружного слоя соединены с молекулами олигосахаров и называются гликолипидами. Распространены мембранные гликопротеины — гликофорины. С ними связывают антигенные различия между группами крови человека. Цитоплазма эритроцита состоит из воды (60 %) и сухого остатка (40 %), содержащего около 95 % гемоглобина и 5 % других веществ. Наличие гемоглобина обусловливает желтую окраску отдельных эритроцитов свежей крови, а совокупность эритроцитов — красный цвет крови. При окрашивании мазка крови азур П-эозином по Романовскому —Гимзе большинство эритроцитов приобретают оранжево-розовый цвет (оксифильны), что обусловлено высоким содержанием в них гемоглобина.

Функции:   1. Дыхательная — перенос кислорода в ткани и углекислого газа от тканей в легкие. 2. Регуляторная и защитная функции — перенос на поверхности различных биологически активных, токсических веществ, защитных факторов: аминокислот, токсинов, антигенов, антител и др. На поверхности эритроцитов часто может происходить реакция антиген-антитело, поэтому они пассивно участвуют в защитных реакциях.

Обязательной составной частью популяции эритроцитов являются их молодые формы (1—5 %), называемые ретикулоцитами, или полихроматофильными эритроцитами. В них сохраняются рибосомы и эндоплазматическая сеть, формирующие зернистые и сетчатые структуры, которые выявляются при специальной суправитальной окраске (рис). При обычной гематологической окраске азур II -эозином они в отличие от основной массы эритроцитов, окрашивающихся в оранжево-розовый цвет (оксифилия), проявляют полихроматофилию и окрашиваются в серо-голубой цвет.

Гемоглобин относится к числу важнейших дыхательных белков, принимающих участие в переносе кислорода от легких к тканям. Он является основным компонентом эритроцитов крови, в каждом из них содержится примерно 280 млн молекул гемоглобина. Выделяют четыре формы гемоглобина: 1) оксигемоглобин; 2) метгемоглобин; 3) карбоксигемоглобин; 4) миоглобин.

VI. ТКАНИ ВНУТРЕННЕЙ СРЕДЫ.

1. Морфофункциональная характеристика и классификация соединительных тканей. Источники развития. Гистогенез. Вклад отечественных и зарубежных учёных в изучение соединительных тканей (А. А. Максимов, А. А. Заварзин, А. В. Румянцев, Г. К. Хрущёв, В. Г. Елисеев).

Соединительные ткани — это комплекс мезенхимных производных, состоящий из клеточных дифферонов и большого количества межклеточно­го вещества (волокнистых структур и аморфного вещества), участвующих в поддержании гомеостаза внутренней среды и отличающихся от других тка­ней меньшей потребностью в аэробных окислительных процессах. Соединительная ткань участвует в формировании стромы органов, прослоек между другими тка­нями, дермы кожи, скелета.   Классификация соединительных тканей. Разновидности соединительной ткани различаются между собой составом и соотношением клеток, воло­кон, а также физико-химическими свойствами аморфного межклеточного вещества. Соединительные ткани подразделяются на собственно соединитель­ную ткань (волокнистые соединительные ткани и соединительные ткани со специальными свойствами) и скелетные ткани. Последние в свою очередь подразделяются на три разновидности хрящевой ткани (гиалиновая, элас­тическая, волокнистая), две разновидности костной ткани (фиброзно-волокнистая и пластинчатая), а также цемент и дентин зуба. Общие принципы организации соединительных тканей. Главными компо­нентами соединительных тканей являются производные клеток — волокни­стые структуры коллагенового и эластического типов, основное (аморфное) вещество, играющее роль интегративно-буферной метаболической среды, и клеточные элементы, создающие и поддерживающие количественное и качественное соотношение состава неклеточных компонентов.

Гистогенез соединительных тканей. Различают эмбриональный и постэм­бриональный гистогенез соединительных тканей. В процессе эмбриональ­ного гистогенеза мезенхима приобретает черты тканевого строения рань­ше закладки других тканей. Этот процесс в различных органах и системах происходит неодинаково и зависит от их неодинаковой физиологической значимости на различных этапах эмбриогенеза. Постэмбриональный гистогенез в нормальных физиологических условиях происходит медленнее и направлен на поддержание тканевого гомеостаза, пролиферацию малодифференцированных клеток и замену ими отмирающих клеток.

Илья Ильич Мечников (1845-1916 гг.) еще при жизни был признан Гордостью России. Врач, многогранный ученый, обнаружил и описал явление фагоцитоза и сформулировал основные положения патологии воспаления, создав фагоцитарную теорию иммунитета, за что в 1908 г. вместе с П. Эрлихом был награжден Нобелевской премией в области физиологии и медицины. Александр Александрович Максимов (1874- 1928 гг.) — выдающийся российский учёный, гистолог и эмбриолог, основатель экспериментальной морфологии соединительной ткани и крови. Он впервые высказал идею о существовании стволовой клетки, единой для кроветворных, а возможно, и для других элементов тканей внутренней среды в постнатальном (после рождения) онтогенезе. В изучение функций и структуры соединительной ткани большой вклад внёс Алексей Алексеевич Заварзин. В своих сочинениях (Очерки эволюционной гистологии крови и соединительной ткани (1945-1947г.г.), Руководство по гистологии (в соавторстве с С. И. Щелкуновым)– 1954 г.) он справедливо считал, что рассматривать гистогенез соединительной ткани необходимо в неразрывном единстве с гистогенезом крови. В 1975 г. вышла в свет монография Н. Г. Хрущова «Гистогенез соединительной ткани», не большая по объему, но очень ёмкая по глубине изложенной в ней мысли о том, что в постнатальном онтогенезе млекопитающих существуют две популяции фибробластов, имеющих разное биологическое предназначение.

VII. МЫШЕЧНЫ Е ТКАНИ

1. Морфофункциональная характеристика и гистогенетическая классификация мышечных тканей. Мышечные ткани представляют собой группу тканей различного происхождения и строения, но объединенных способностью к сокращению. Общая морфофункциональная характеристика мышечных тканей 1) структурные элементы (клетки, волокна) обладают удлиненной формой; 2) наличие органелл специального назначения – миофиламенты, миофибриллы; 3) с сократительными органеллами связаны элементы цитоскелета и плазмолемма; 4) расположение митохондрий рядом с сократительными элементами (обеспечение энергией в виде макроэргических соединений - АТФ); 5) наличие трофических включений гликогена, липидов, которые являются источником энергии; 6) наличие миоглобина – кислород-связывающего железосодержащего белка (в некоторых мышечных тканях); 7) хорошо развиты структуры, осуществляющие накопление и выделение ионов кальция (кавеолы, гладкая ЭПС); 8) для синхронизации сокращений соседние мышечные элементы иннервируются из одного источника или (и) связаны многочисленными щелевыми соединениями, которые обеспечивают транспорт ионов

Классификация. В основу классификации мышечных тканей положе­ны два принципа - морфофункциональный и гистогенетический. В со­ответствии с морфофункциональным принципом, в зависимости от структуры органелл сокращения, мышечные ткани подразделяют на две подгруппы. Первая подгруппа - поперечнополосатые (исчерченные) мышечные ткани (textus muscularis striatus). В цитоплазме их элементов миозиновые филамен-ты постоянно полимеризованы, образуют с актяновыми нитями постоянно существующие миофибриллы. Последние организованы в характерные ком­плексы - саркомеры. В соседних миофибриллах структурные субъедини­цы саркомеров расположены на одинаковом уровне и создают поперечную исчерченность. Исчерченные мышечные ткани сокращаются быстрее, чем гладкие. Вторая подгруппа - гладкие (неисчерченные) мышечные ткани (textus muscularis nonstriatus). Эти ткани характеризуются тем, что вне сокращения миозиновые филаменты деполимеризованы. В присутствии ионов кальция они полимеризуются и вступают во взаимодействие с филаментами актина. Образующиеся при этом миофибриллы не имеют поперечной исчерченности: при специальных окрасках они представлены равномерно окрашенны­ми по всей длине (гладкими) нитями. В соответствии с гистогенетическим принципом в зависимости от ис­точников развития (эмбриональных зачатков) мышечные ткани подразде­ляются на 5 типов: мезенхимные (из десмального зачатка в составе ме­зенхимы), эпидермальные (из кожной эктодермы и из прехордальной пластинки), нейральные (из нервной трубки), целомические (из миэпикардиальной пластинки висцерального листка сомита) и соматические (миотомные)          

VIII. НЕРВНА Я ТКАНЬ

Синапсы.

Синапс— специализированные структуры, которые обеспечивают передачу возбуждения с одной возбудимой клетки на другую. Понятие СИНАПС введено в физиологию Ч.Шеррингтоном (соединение, контакт). Синапс обеспечивает функциональную связь между отдельными клетками. Подразделяются на нервно-нервные, нервно-мышечные и синапсы нервных клеток с секреторными клетками (нервно-железистые). В нейроне выделяется три функциональных отдела: сома, дендрит, аксон. Поэтому между нейронами существуют все возможные комбинации контактов. Например, аксо-аксональный, аксо-соматический и аксо-дендритный.

Классификация. 1)по местоположению и принадлежности соответствующим структурам: - периферические (нервно-мышечные, нейросекреторные, рецепторнонейрональные); - центральные (аксо-соматические, аксо-дендритные, аксо-аксональные, сомато-дендритные. сомато-соматические); 2)механизму действия — возбуждающие и тормозящие; 3)способу передачи сигналов— химические, электрические, смешанные. 4)химические классифицируют по медиатору, с помощью которого осуществляется передача— холинергические, адренергические, серотонинергические, глицинергически. и т.д.

Строение синапса. Синапс состоит из следующих основных элементов: •Пресинаптической мембраны (в нервно-мышечном синапсе — это концевая пластинка): •Постсинаптической мембраны; •Синаптической щели. Синаптическая щель заполнена олигосахаридсодержащей соединительной тканью, которая играет роль поддерживающей структуры для обеих контактирующих клеток.

8. Рефлекторные дуги. Нейронная теория, вклад зарубежных и отечественных ученых в ее становлении (С. Рамон-и-Кахал, К. Гольджи, А. С. Догель, Б. И. Лаврентьев).

Рефлекторные дуги. Нервная ткань входит в состав нервной системы, функционирующей по рефлекторному принципу, морфологическим субстратом которого является рефлекторная дуга. Рефлекторная дуга представляет собой цепь нейронов, связанных друг с другом синапсами и обеспечивающих проведение нервно­го импульса от рецептора чувствительного нейрона до эфферентного окон­чания в рабочем органе. Самая простая рефлекторная дуга состоит из двух нейронов — чув­ствительного и двигательного. В подавляющем большин­стве случаев между чувствительными и двигательными нейронами включе­ны вставочные, или ассоциативные, нейроны. У высших живот­ных рефлекторные дуги состоят обычно из многих нейронов и имеют зна­чительно более сложное строение.

Нейронная теория. Теория контакта, утверждающая, что нервная система построена из обособленных, контактирующих между собой клеток - нейронов, сохраняющих генетическую, морфологическую и функциональную индивидуальность. Н. т. рассматривает нервную деятельность как результат взаимодействия совокупности нейронов. Этому представлению в конце 19 - начале 20 вв. противостояла теория континуитета, полагавшая, что клеточное вещество одного нейрона переходит в вещество другого без перерыва, благодаря чему отростки нервных клеток образуют единую плазматическую сеть. Сторонники этой теории (венгерский учёный И. Апати, немецкий - А. Бете и др.) считали, что цитоплазматическую непрерывность нервной ткани обеспечивают нейрофибриллы. Убедительные факты в пользу Н. т. были получены С. Рамон-и-Кахалем, А. А. Заварзиным, Б. И. Лаврентьевым и др. при изучении микроскопического строения нервной системы, её эмбрионального развития, а также дегенерации и регенерации нейронов. Ныне в свете электрофизиологических и электронномикроскопических данных правильность Н. т. не вызывает сомнений. Нервная система у всех организмов, включая низшие, образована обособленными нейронами, взаимодействующими в местах контакта, которые имеют сложное строение и называются синапсами. Отступления от этого общего принципа редки. Функциональная обособленность нейронов может утрачиваться при синхронном возбуждении группы нейронов (например, в центре, иннервирующем электрические органы рыб). У кальмаров наличие гигантских аксонов объясняется плазматическим слиянием отростков нескольких нейронов, утративших морфологическую обособленность.

Частная гистология

Х. Нервная система

Головной мозг (большие полушария). Цитоархитектоника слоев коры больших полушарий, нейронный состав. Представление о модульной организации коры. Миелоархитектоника – радиальные и тангенциальные нервные волокна. Гемато-энцефалический барьер, его строение и функции.

Кора больших полушарий имеет различную толщину от 3 до 5 мм, формирующая борозды и извилины. Снаружи покрыта мягкой мозговой оболочкой, содержащей сосуды и нервы, которые обеспечивают трофику коры. Кора больших полушарий и мозжечок, представляют собой экранные нервные центры, клетки в них располагаются слоями в виде экрана. Цитоархитектоника коры полушарий головного мозга. Сразу под мягкой мозговой оболочкой располагается:1. Молекулярный слой – в нем находится небольшое количество веретеновидных клеток, а также тангенсальное сплетение, расположенное параллельно поверхности и образованное волокнами, как молекулярного слоя, так и нижележащих слоев коры полушарий.2. Наружный зернистый слой – он содержит большое количество густо расположенных клеток. Клетки этого слоя имеют различную форму (звездчатую, паукообразную, угловатую и др.), их отростки образуют связи между соседними клетками, а также поднимаются в молекулярный слой и принимают участие в формировании тангенсального сплетения. 3. Пирамидный слой – представлен клетками пирамидной формы, размером от 10 до 40 мкм. От вершины отходит главный дендритит, который поднимаются в молекулярный слой, и принимает участие в формировании тангенсального сплетения, от боковых поверхностей этих клеток отходят дендриты, обеспечивающие связь с соседними клетками. Аксоны этих клеток отходят от середины их основания и образуют ассоциативные нервные волокна, соединяющие клетки между собой в одном полушарии и коммисуральные нервные волокна, проходящие в мозолистом теле и связывающие клетки с соседним полушарием.4. Внутренний зернистый слой – он имеет подобное строение как наружный зернистый слой и содержит множество мелких нейронов, густо расположенных, но в данном слое преобладают клетки звездчатой формы. Отростки этого слоя также поднимаются в молекулярный слой и принимают участие в образовании тангенсального сплетения.5. Ганглионарный слой (слой больших пирамид) – он представлен крупными нейронами, которые были описаны В.А. Бецом и получили название – клетки Беца. По строению подобны малым пирамидам, но их размер 80 на 120 мкм. Дендриты, отходящие от вершины участвуют в образовании тангенсального сплетения молекулярного слоя, а от боковых поверхностей клеток обеспечивают связь с соседними нейронами. Аксоны, отходящие от середины основания клетки, образуют проекционные (двигательные, эфферентные) нервные волокна, формирующие нисходящие проводящие пути.6. Полиморфный слой – он образован клетками различной формы, но с преобладанием веретеновидных. В процессе закладки более крупные клетки расположены на границе с белым веществом, а клетки помельче прилежат к ганглионарному слою. Отростки данного слоя, также достигают молекулярного слоя и принимают участие в формировании тангенсального сплетения. Миелоархитектоника коры больших полушарии головного мозга представлена следующими структурами:1. Тангенсальное сплетение молекулярного слоя.2. Внешние и внутренние полосы Белларже, расположенные между внутренним зернистым и ганглионарным слоями, представляет собой тангенсальное сплетение, которое обеспечивает горизонтальные связи между клетками.3. Ассоциативные волокна, образованные аксонами пирамидных клеток.4. Коммисуралные волокна, образованные аксонами пирамидных клеток.5. Проекционные волокна, образованные аксонами клеток Беца. Различают 2 вида коры: · Гранулярный тип – при данном типе в коре будут хорошо развиты наружный и внутренний зернистые слои и плохо развиты пирамидный слой (височная, затылочная доли). Хорошо развиты II и IV слои коры больших полушарий.· Агранулярный тип – плохо развиты зернистые слои, но хорошо пирамидный, ганглионарнй и полиморфный слои коры (прецентральная извилина). Хорошо развиты III, V и VI слои коры больших полушарий. МОДУЛЬ. Модуль – это структурно-функциональная единица неокортекса, описанная школой Сентаготаи. Возбуждение в коре передается в виде вертикальных колонок, через все слои коры. Модуль имеет диаметр около 300 мкм и состоит из 2 микромодулей (Д до 100 мкм). Модуль проецируется а 3 модуля свого полушария и 2 противоположного. В состав модуля входят: Пирамидные клетки, 3 афферентных волокна – 1 кортикокортикальное и 2 таламокортикальных. Возбуждающие нейроны – шипиковые нейроны, на их отростках находятся шипики:o диффузногоo фокального типа. Тормозные нейроны:o Корзинчатые (мелкие и крупные),o Аксо-аксональные нейроны,o Нейроны с аксональной кисточкой,o Нейроны с двойным букетом дендритов – это нейрон тормозит тормозные нейроны, тем самым приводит к возбуждению пирамидных нейронов (вызывает вторичное возбуждение пирамидных клеток)Т.о., в модуле есть 3 отдела:1) вход – таламокортикальные и кортикокортикальное волокна, несущие импульс от таламуса,2) зона обработки информации – система пирамидных и звездчатых клеток, связанных активирующими и тормозными синапсами,3) выход – аксоны пирамидных клеток. Гематоэнцефалический барьер регулирует проникновение из крови в мозг биологически активных веществ, метаболитов, химических веществ, воздействующих на чувствительные структуры мозга, препятствует поступлению в мозг чужеродных веществ, микроорганиз­мов, токсинов.В представлениях о гематоэнцефалическом барьере в качестве основных положений подчеркивается следующее:1) проникновение веществ в мозг осуществляется главным образом не через ликворные пути, а через кровеносную систему на уровне капилляр — нервная клетка;2) гематоэнцефалический барьер является в большей степени не анатомическим образованием, а функциональным понятием, характеризующим определенный физиологический механизм. Как любой существующий в организме физиологический механизм, гематоэнцефалический барьер находится под регулирующим влиянием нервной и гуморальной систем;3) среди управляющих гематоэнцефалическим барьером факторов ведущим является уровень деятельности и метаболизма нервной ткани.

 

 

4. Мозжечок. Строение и нейронный состав коры мозжечка. Межнейрональные связи. Афферентные и эфферентные нервные волокна. Глиоциты мозжечка.

МОЗЖЕЧОК. Представляет собой центральный орган равновесия и координации движений. Состоит из 2 симметричных половин, соединенных червем. Содержит белое вещество, расположенное в центре, по периферии серое вещество – кора мозжечка, образующая борозды и извилины. Борозды и извилины создают на разрезе характерную для мозжечка картину «древа жизни». Снаружи мозжечок покрыт мягкой мозговой оболочкой с сосудами и нервами.В коре мозжечка выделяют 3 слоя: молекулярный слой, ганглионарный слой, зернистый слой. Ганглионарный слой – образован клетками грушевидной формы или клетками Пуркинье, лежащими в 1 слой. Это эфферентные нейроны. Тело этих клеток грушевидной формы, от тела в молекулярный слой отходят 2-3 дендрита, которые образуют густые ветвления в одной плоскости, в плоскости поперек извилины в виде шпалер и в другой плоскости - Молекулярный слой – он содержит 2 вида клеток:1. Корзинчатые клетки – они лежат в нижней трети молекулярного слоя, имеют длинные ветвящиеся дендриты и длинный аксон, расположенный в плоскости поперек извилины. 2. Звездчатые клетки – выполняют вставочную функцию и обеспечивают торможение клеток Пуркинье.· Мелкие звездчатые клетки с короткими отростками, они образуют синаптическую связь сдендритами клеток Пуркинье.· Крупные звездчатые нейроны с длинными



Поделиться:


Последнее изменение этой страницы: 2020-12-17; просмотров: 214; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.145.97.248 (0.052 с.)